Abstract
Background: A recent study from our laboratory showed that induction of the multidrug resistance related drug efflux pump ABCG2 contributed to acquired resistance of human T cells to the disease modifying antirheumatic drug (DMARD) sulfasalazine (SSZ).
Objectives: To investigate the duration of SSZ resistance and ABCG2 expression after withdrawal of SSZ and rechallenging with SSZ, and to assess the impact of SSZ resistance on responsiveness to other DMARDs.
Methods: Human CEM cells (T cell origin) with acquired resistance to SSZ (CEM/SSZ) were characterised for (a) SSZ sensitivity and ABCG2 expression during withdrawal and rechallenge of SSZ, and (b) antiproliferative efficacy of other DMARDs.
Results: ABCG2 protein expression was stable for at least 4 weeks when CEM/SSZ cells were grown in the absence of SSZ, but gradually declined, along with SSZ resistance levels, to non-detectable levels after withdrawal of SSZ for 6 months. Rechallenging with SSZ led to a rapid (<2.5 weeks) resumption of SSZ resistance and ABCG2 expression as in the original CEM/SSZ cells. CEM/SSZ cells displayed diminished sensitivity to the DMARDs leflunomide (5.1-fold) and methotrexate (1.8-fold), were moderately more sensitive (1.6–2.0 fold) to cyclosporin A and chloroquine, and markedly more sensitive (13-fold) to the glucocorticoid dexamethasone as compared with parental CEM cells.
Conclusion: The drug efflux pump ABCG2 has a major role in conferring resistance to SSZ. The collateral sensitivity of SSZ resistant cells for some other (non-related) DMARDs may provide a further rationale for sequential mono- or combination therapies with distinct DMARDs upon decreased efficacy of SSZ.
Full Text
The Full Text of this article is available as a PDF (364.3 KB).
Figure 1 .

(A) Time course of sensitivity to sulfasalazine (SSZ) of CEM (T) during development of SSZ resistance, after withdrawal of SSZ from CEM/SSZ1.5 cells and rechallenge of revertant CEM/SSZ1.5 cells with SSZ. Parental CEM (T) cells (point A) were exposed to a starting concentration of 0.4 mM SSZ that was gradually increased to 1.5 mM over a period of 6 months to yield SSZ resistant CEM/SSZ1.5 cells (point B). From this point on CEM/SSZ1.5 were grown in the absence of SSZ to finally yield revertant CEM/SSZ1.5 cells that displayed again parental CEM (T) cell sensitivity to SSZ (point C). When revertant cells were re-exposed to 1.5 mM SSZ for 2.5 weeks (point D), CEM/SSZ1.5 resumed their original resistance level as observed at point B. IC50 values were determined after 72 hours' exposure of cells to SSZ. (B) ABCG2/BCRP and ABCC1/MRP1 protein expression, and mitoxantrone sensitivity of CEM (T) cells and (revertant) CEM/SSZ1.5 cells isolated at the various time points A–D. Cell lysates of 2008/MRP132 and MCF7/MR43 served as positive controls for ABCC1/MRP1 and ABCG2/BCRP, respectively (not shown). For CEM (T) and CEM/SSZ1.5 cells, 50 µg of total cell lysate was applied on the sodium dodecyl sulphate polyacrylamide gel, and for the controls 10 µg protein. ABCC1/MRP1 was detected by the monoclonal antibody MRPr1, and ABCG2/BCRP was detected by the monoclonal antibody BXP21.32,33 ß-Actin was used as a control for equal protein loading.
Figure 2 .
(A) Antiproliferative effect of SSZ against CEM/SSZ1.5 cells isolated at various times (0–10 weeks) after withdrawal of SSZ from CEM/SSZ1.5 cells from point B in fig 1A: 0 days (closed circles), 3 days (open triangles), 1 week (closed triangles), 4 weeks (open diamonds), 10 weeks (closed squares). Antiproliferative effects/growth inhibition for SSZ were evaluated after 72 hours' exposure to SSZ and compared with those for parental CEM (T) cells (open circles). (B) Expression of ABCG2/BCRP and ABCC1/MRP1 protein of CEM/SSZ1.5 cells during withdrawal of SSZ for up to 10 weeks as in fig 2A. Lane A: parental CEM (T) cells; lane B: CEM/SSZ1.5 cells before withdrawal of SSZ; lanes C–F: CEM/SSZ1.5 cells 3 days, 7 days, 4 weeks, and 10 weeks, respectively, after withdrawal of SSZ. Note: sample E for ABCC1/MRP1 was not tested. (C) Reversal of SSZ resistance in CEM/SSZ1.5 cells by the ABCG2/BCRP blocker Ko143 before and after 4 weeks' withdrawal of SSZ. Symbols: (open triangle) parental CEM (T) cells, (open circles) CEM/SSZ1.5 cells, (closed circles) CEM/SSZ cells + 0.5 µM Ko143, (open squares) CEM/SSZ1.5 cells after 4 weeks' withdrawal of SSZ, (closed squares) CEM/SSZ1.5 cells after 4 weeks withdrawal of SSZ + 0.5 µM SSZ. Antiproliferative effects of SSZ were evaluated after 72 hours' exposure to SSZ in the absence or presence of Ko143.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aletaha Daniel, Smolen Josef S. Effectiveness profiles and dose dependent retention of traditional disease modifying antirheumatic drugs for rheumatoid arthritis. An observational study. J Rheumatol. 2002 Aug;29(8):1631–1638. [PubMed] [Google Scholar]
- Allen John D., van Loevezijn Arnold, Lakhai Jeany M., van der Valk Martin, van Tellingen Olaf, Reid Glen, Schellens Jan H. M., Koomen Gerrit-Jan, Schinkel Alfred H. Potent and specific inhibition of the breast cancer resistance protein multidrug transporter in vitro and in mouse intestine by a novel analogue of fumitremorgin C. Mol Cancer Ther. 2002 Apr;1(6):417–425. [PubMed] [Google Scholar]
- Almawi W. Y., Melemedjian O. K. Negative regulation of nuclear factor-kappaB activation and function by glucocorticoids. J Mol Endocrinol. 2002 Apr;28(2):69–78. doi: 10.1677/jme.0.0280069. [DOI] [PubMed] [Google Scholar]
- Almawi Wassim Y., Abou Jaoude Maroun M., Li Xian C. Transcriptional and post-transcriptional mechanisms of glucocorticoid antiproliferative effects. Hematol Oncol. 2002 Mar;20(1):17–32. doi: 10.1002/hon.684. [DOI] [PubMed] [Google Scholar]
- Assaraf Yehuda G., Rothem Lilah, Hooijberg Jan Hendrik, Stark Michal, Ifergan Ilan, Kathmann Ietje, Dijkmans Ben A. C., Peters Godefridus J., Jansen Gerrit. Loss of multidrug resistance protein 1 expression and folate efflux activity results in a highly concentrative folate transport in human leukemia cells. J Biol Chem. 2002 Dec 16;278(9):6680–6686. doi: 10.1074/jbc.M209186200. [DOI] [PubMed] [Google Scholar]
- Azadkhan A. K., Truelove S. C., Aronson J. K. The disposition and metabolism of sulphasalazine (salicylazosulphapyridine) in man. Br J Clin Pharmacol. 1982 Apr;13(4):523–528. doi: 10.1111/j.1365-2125.1982.tb01415.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bach M. K., Brashler J. R., Johnson M. A. Inhibition by sulfasalazine of LTC synthetase and of rat liver glutathione S-transferases. Biochem Pharmacol. 1985 Aug 1;34(15):2695–2704. doi: 10.1016/0006-2952(85)90570-2. [DOI] [PubMed] [Google Scholar]
- Baldwin A. S. Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest. 2001 Feb;107(3):241–246. doi: 10.1172/JCI11991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrera P., Haagsma C. J., Boerbooms A. M., Van Riel P. L., Borm G. F., Van de Putte L. B., Van der Meer J. W. Effect of methotrexate alone or in combination with sulphasalazine on the production and circulating concentrations of cytokines and their antagonists. Longitudinal evaluation in patients with rheumatoid arthritis. Br J Rheumatol. 1995 Aug;34(8):747–755. doi: 10.1093/rheumatology/34.8.747. [DOI] [PubMed] [Google Scholar]
- Bates S. E., Robey R., Miyake K., Rao K., Ross D. D., Litman T. The role of half-transporters in multidrug resistance. J Bioenerg Biomembr. 2001 Dec;33(6):503–511. doi: 10.1023/a:1012879205914. [DOI] [PubMed] [Google Scholar]
- Baum C. L., Selhub J., Rosenberg I. H. Antifolate actions of sulfasalazine on intact lymphocytes. J Lab Clin Med. 1981 Jun;97(6):779–784. [PubMed] [Google Scholar]
- Borst P., Elferink R. Oude. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2001 Nov 9;71:537–592. doi: 10.1146/annurev.biochem.71.102301.093055. [DOI] [PubMed] [Google Scholar]
- Borst P., Evers R., Kool M., Wijnholds J. A family of drug transporters: the multidrug resistance-associated proteins. J Natl Cancer Inst. 2000 Aug 16;92(16):1295–1302. doi: 10.1093/jnci/92.16.1295. [DOI] [PubMed] [Google Scholar]
- Bradshaw D. M., Arceci R. J. Clinical relevance of transmembrane drug efflux as a mechanism of multidrug resistance. J Clin Oncol. 1998 Nov;16(11):3674–3690. doi: 10.1200/JCO.1998.16.11.3674. [DOI] [PubMed] [Google Scholar]
- Chen F., Castranova V., Shi X. New insights into the role of nuclear factor-kappaB in cell growth regulation. Am J Pathol. 2001 Aug;159(2):387–397. doi: 10.1016/s0002-9440(10)61708-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cutolo M., Sulli A., Pizzorni C., Seriolo B., Straub R. H. Anti-inflammatory mechanisms of methotrexate in rheumatoid arthritis. Ann Rheum Dis. 2001 Aug;60(8):729–735. doi: 10.1136/ard.60.8.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalton W. S., Durie B. G., Alberts D. S., Gerlach J. H., Cress A. E. Characterization of a new drug-resistant human myeloma cell line that expresses P-glycoprotein. Cancer Res. 1986 Oct;46(10):5125–5130. [PubMed] [Google Scholar]
- Das K. M., Dubin R. Clinical pharmacokinetics of sulphasalazine. Clin Pharmacokinet. 1976 Nov-Dec;1(6):406–425. doi: 10.2165/00003088-197601060-00002. [DOI] [PubMed] [Google Scholar]
- Doyle L. A., Yang W., Abruzzo L. V., Krogmann T., Gao Y., Rishi A. K., Ross D. D. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15665–15670. doi: 10.1073/pnas.95.26.15665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goekoop Y. P., Allaart C. F., Breedveld F. C., Dijkmans B. A. Combination therapy in rheumatoid arthritis. Curr Opin Rheumatol. 2001 May;13(3):177–183. doi: 10.1097/00002281-200105000-00005. [DOI] [PubMed] [Google Scholar]
- Gottesman M. M., Ambudkar S. V. Overview: ABC transporters and human disease. J Bioenerg Biomembr. 2001 Dec;33(6):453–458. doi: 10.1023/a:1012866803188. [DOI] [PubMed] [Google Scholar]
- Gottesman Michael M., Fojo Tito, Bates Susan E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002 Jan;2(1):48–58. doi: 10.1038/nrc706. [DOI] [PubMed] [Google Scholar]
- Hooijberg J. H., Broxterman H. J., Kool M., Assaraf Y. G., Peters G. J., Noordhuis P., Scheper R. J., Borst P., Pinedo H. M., Jansen G. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res. 1999 Jun 1;59(11):2532–2535. [PubMed] [Google Scholar]
- Jansen G., Mauritz R., Drori S., Sprecher H., Kathmann I., Bunni M., Priest D. G., Noordhuis P., Schornagel J. H., Pinedo H. M. A structurally altered human reduced folate carrier with increased folic acid transport mediates a novel mechanism of antifolate resistance. J Biol Chem. 1998 Nov 13;273(46):30189–30198. doi: 10.1074/jbc.273.46.30189. [DOI] [PubMed] [Google Scholar]
- Jansen J. A. Kinetics of the binding of salicylazosulfapyridine to human serum albumin. Acta Pharmacol Toxicol (Copenh) 1977 Nov;41(5):401–416. doi: 10.1111/j.1600-0773.1977.tb02151.x. [DOI] [PubMed] [Google Scholar]
- Landewé Robert B. M., Boers Maarten, Verhoeven Arco C., Westhovens Rene, van de Laar Mart A. F. J., Markusse Harry M., van Denderen J. Christiaan, Westedt Marie Louise, Peeters Andre J., Dijkmans Ben A. C. COBRA combination therapy in patients with early rheumatoid arthritis: long-term structural benefits of a brief intervention. Arthritis Rheum. 2002 Feb;46(2):347–356. doi: 10.1002/art.10083. [DOI] [PubMed] [Google Scholar]
- Laupèze B., Amiot L., Payen L., Drénou B., Grosset J. M., Lehne G., Fauchet R., Fardel O. Multidrug resistance protein (MRP) activity in normal mature leukocytes and CD34-positive hematopoietic cells from peripheral blood. Life Sci. 2001 Feb 2;68(11):1323–1331. doi: 10.1016/s0024-3205(00)01026-2. [DOI] [PubMed] [Google Scholar]
- Lee D. H., Goldberg A. L. Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol. 1998 Oct;8(10):397–403. doi: 10.1016/s0962-8924(98)01346-4. [DOI] [PubMed] [Google Scholar]
- Legrand O., Perrot J. Y., Tang R., Simonin G., Gurbuxani S., Zittoun R., Marie J. P. Expression of the multidrug resistance-associated protein (MRP) mRNA and protein in normal peripheral blood and bone marrow haemopoietic cells. Br J Haematol. 1996 Jul;94(1):23–33. doi: 10.1046/j.1365-2141.1996.d01-1776.x. [DOI] [PubMed] [Google Scholar]
- Leslie E. M., Deeley R. G., Cole S. P. Toxicological relevance of the multidrug resistance protein 1, MRP1 (ABCC1) and related transporters. Toxicology. 2001 Oct 5;167(1):3–23. doi: 10.1016/s0300-483x(01)00454-1. [DOI] [PubMed] [Google Scholar]
- Litman T., Brangi M., Hudson E., Fetsch P., Abati A., Ross D. D., Miyake K., Resau J. H., Bates S. E. The multidrug-resistant phenotype associated with overexpression of the new ABC half-transporter, MXR (ABCG2). J Cell Sci. 2000 Jun;113(Pt 11):2011–2021. doi: 10.1242/jcs.113.11.2011. [DOI] [PubMed] [Google Scholar]
- Litman T., Druley T. E., Stein W. D., Bates S. E. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci. 2001 Jun;58(7):931–959. doi: 10.1007/PL00000912. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maetzel A., Wong A., Strand V., Tugwell P., Wells G., Bombardier C. Meta-analysis of treatment termination rates among rheumatoid arthritis patients receiving disease-modifying anti-rheumatic drugs. Rheumatology (Oxford) 2000 Sep;39(9):975–981. doi: 10.1093/rheumatology/39.9.975. [DOI] [PubMed] [Google Scholar]
- Maillefert J. F., Maynadie M., Tebib J. G., Aho S., Walker P., Chatard C., Dulieu V., Bouvier M., Carli P. M., Tavernier C. Expression of the multidrug resistance glycoprotein 170 in the peripheral blood lymphocytes of rheumatoid arthritis patients. The percentage of lymphocytes expressing glycoprotein 170 is increased in patients treated with prednisolone. Br J Rheumatol. 1996 May;35(5):430–435. doi: 10.1093/rheumatology/35.5.430. [DOI] [PubMed] [Google Scholar]
- Maliepaard M., Scheffer G. L., Faneyte I. F., van Gastelen M. A., Pijnenborg A. C., Schinkel A. H., van De Vijver M. J., Scheper R. J., Schellens J. H. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001 Apr 15;61(8):3458–3464. [PubMed] [Google Scholar]
- Maliepaard M., van Gastelen M. A., de Jong L. A., Pluim D., van Waardenburg R. C., Ruevekamp-Helmers M. C., Floot B. G., Schellens J. H. Overexpression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res. 1999 Sep 15;59(18):4559–4563. [PubMed] [Google Scholar]
- Manna S. K., Mukhopadhyay A., Aggarwal B. B. Leflunomide suppresses TNF-induced cellular responses: effects on NF-kappa B, activator protein-1, c-Jun N-terminal protein kinase, and apoptosis. J Immunol. 2000 Nov 15;165(10):5962–5969. doi: 10.4049/jimmunol.165.10.5962. [DOI] [PubMed] [Google Scholar]
- Mauritz R., Bekkenk M. W., Rots M. G., Pieters R., Mini E., van Zantwijk C. H., Veerman A. J., Peters G. J., Jansen G. Ex vivo activity of methotrexate versus novel antifolate inhibitors of dihydrofolate reductase and thymidylate synthase against childhood leukemia cells. Clin Cancer Res. 1998 Oct;4(10):2399–2410. [PubMed] [Google Scholar]
- Mauritz Robert, Peters Godefridus J., Priest David G., Assaraf Yehuda G., Drori Stavit, Kathmann Ietje, Noordhuis Paul, Bunni Marlene A., Rosowsky Andre, Schornagel Jan H. Multiple mechanisms of resistance to methotrexate and novel antifolates in human CCRF-CEM leukemia cells and their implications for folate homeostasis. Biochem Pharmacol. 2002 Jan 15;63(2):105–115. doi: 10.1016/s0006-2952(01)00824-3. [DOI] [PubMed] [Google Scholar]
- Mini E., Moroson B. A., Franco C. T., Bertino J. R. Cytotoxic effects of folate antagonists against methotrexate-resistant human leukemic lymphoblast CCRF-CEM cell lines. Cancer Res. 1985 Jan;45(1):325–330. [PubMed] [Google Scholar]
- Morgan C., Lunt M., Brightwell H., Bradburn P., Fallow W., Lay M., Silman A., Bruce I. N. Contribution of patient related differences to multidrug resistance in rheumatoid arthritis. Ann Rheum Dis. 2003 Jan;62(1):15–19. doi: 10.1136/ard.62.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Dell James R., Leff Robert, Paulsen Gail, Haire Claire, Mallek Jack, Eckhoff P. James, Fernandez Ana, Blakely Kent, Wees Steven, Stoner Julie. Treatment of rheumatoid arthritis with methotrexate and hydroxychloroquine, methotrexate and sulfasalazine, or a combination of the three medications: results of a two-year, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2002 May;46(5):1164–1170. doi: 10.1002/art.10228. [DOI] [PubMed] [Google Scholar]
- Renes Johan, de Vries Elisabeth G. E., Jansen Peter L. M., Müller Michael. The (patho)physiological functions of the MRP family. Drug Resist Updat. 2000 Oct;3(5):289–302. doi: 10.1054/drup.2000.0156. [DOI] [PubMed] [Google Scholar]
- Robbiani D. F., Finch R. A., Jäger D., Muller W. A., Sartorelli A. C., Randolph G. J. The leukotriene C(4) transporter MRP1 regulates CCL19 (MIP-3beta, ELC)-dependent mobilization of dendritic cells to lymph nodes. Cell. 2000 Nov 22;103(5):757–768. doi: 10.1016/s0092-8674(00)00179-3. [DOI] [PubMed] [Google Scholar]
- Rodenburg R. J., Ganga A., van Lent P. L., van de Putte L. B., van Venrooij W. J. The antiinflammatory drug sulfasalazine inhibits tumor necrosis factor alpha expression in macrophages by inducing apoptosis. Arthritis Rheum. 2000 Sep;43(9):1941–1950. doi: 10.1002/1529-0131(200009)43:9<1941::AID-ANR4>3.0.CO;2-O. [DOI] [PubMed] [Google Scholar]
- Ross D. D., Yang W., Abruzzo L. V., Dalton W. S., Schneider E., Lage H., Dietel M., Greenberger L., Cole S. P., Doyle L. A. Atypical multidrug resistance: breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst. 1999 Mar 3;91(5):429–433. doi: 10.1093/jnci/91.5.429. [DOI] [PubMed] [Google Scholar]
- Rots M. G., Pieters R., Kaspers G. J., Veerman A. J., Peters G. J., Jansen G. Classification of ex vivo methotrexate resistance in acute lymphoblastic and myeloid leukaemia. Br J Haematol. 2000 Sep;110(4):791–800. doi: 10.1046/j.1365-2141.2000.02070.x. [DOI] [PubMed] [Google Scholar]
- Salmon S. E., Dalton W. S. Relevance of multidrug resistance to rheumatoid arthritis: development of a new therapeutic hypothesis. J Rheumatol Suppl. 1996 Mar;44:97–101. [PubMed] [Google Scholar]
- Scheffer G. L., Kool M., Heijn M., de Haas M., Pijnenborg A. C., Wijnholds J., van Helvoort A., de Jong M. C., Hooijberg J. H., Mol C. A. Specific detection of multidrug resistance proteins MRP1, MRP2, MRP3, MRP5, and MDR3 P-glycoprotein with a panel of monoclonal antibodies. Cancer Res. 2000 Sep 15;60(18):5269–5277. [PubMed] [Google Scholar]
- Scheffer G. L., Maliepaard M., Pijnenborg A. C., van Gastelen M. A., de Jong M. C., Schroeijers A. B., van der Kolk D. M., Allen J. D., Ross D. D., van der Valk P. Breast cancer resistance protein is localized at the plasma membrane in mitoxantrone- and topotecan-resistant cell lines. Cancer Res. 2000 May 15;60(10):2589–2593. [PubMed] [Google Scholar]
- Symmons D. P. Knee pain in older adults: the latest musculoskeletal "epidemic". Ann Rheum Dis. 2001 Feb;60(2):89–90. doi: 10.1136/ard.60.2.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tak P. P., Firestein G. S. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 2001 Jan;107(1):7–11. doi: 10.1172/JCI11830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taylor C. W., Dalton W. S., Parrish P. R., Gleason M. C., Bellamy W. T., Thompson F. H., Roe D. J., Trent J. M. Different mechanisms of decreased drug accumulation in doxorubicin and mitoxantrone resistant variants of the MCF7 human breast cancer cell line. Br J Cancer. 1991 Jun;63(6):923–929. doi: 10.1038/bjc.1991.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Volk Erin L., Farley Kate M., Wu Yan, Li Fei, Robey Robert W., Schneider Erasmus. Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res. 2002 Sep 1;62(17):5035–5040. [PubMed] [Google Scholar]
- Wahl C., Liptay S., Adler G., Schmid R. M. Sulfasalazine: a potent and specific inhibitor of nuclear factor kappa B. J Clin Invest. 1998 Mar 1;101(5):1163–1174. doi: 10.1172/JCI992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wielinga P. R., Reid G., Challa E. E., van der Heijden I., van Deemter L., de Haas M., Mol C., Kuil A. J., Groeneveld E., Schuetz J. D. Thiopurine metabolism and identification of the thiopurine metabolites transported by MRP4 and MRP5 overexpressed in human embryonic kidney cells. Mol Pharmacol. 2002 Dec;62(6):1321–1331. doi: 10.1124/mol.62.6.1321. [DOI] [PubMed] [Google Scholar]
- Wijnholds J., Mol C. A., van Deemter L., de Haas M., Scheffer G. L., Baas F., Beijnen J. H., Scheper R. J., Hatse S., De Clercq E. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7476–7481. doi: 10.1073/pnas.120159197. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wolfe F. Adverse drug reactions of DMARDs and DC-ARTs in rheumatoid arthritis. Clin Exp Rheumatol. 1997 May-Jun;15 (Suppl 17):S75–S81. [PubMed] [Google Scholar]
- Wolfe F. The epidemiology of drug treatment failure in rheumatoid arthritis. Baillieres Clin Rheumatol. 1995 Nov;9(4):619–632. doi: 10.1016/s0950-3579(05)80305-x. [DOI] [PubMed] [Google Scholar]
- Yamamoto Y., Gaynor R. B. Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest. 2001 Jan;107(2):135–142. doi: 10.1172/JCI11914. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yudoh K., Matsuno H., Nakazawa F., Yonezawa T., Kimura T. Increased expression of multidrug resistance of P-glycoprotein on Th1 cells correlates with drug resistance in rheumatoid arthritis. Arthritis Rheum. 1999 Sep;42(9):2014–2015. doi: 10.1002/1529-0131(199909)42:9<2014::AID-ANR32>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
- Zhou S., Schuetz J. D., Bunting K. D., Colapietro A. M., Sampath J., Morris J. J., Lagutina I., Grosveld G. C., Osawa M., Nakauchi H. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med. 2001 Sep;7(9):1028–1034. doi: 10.1038/nm0901-1028. [DOI] [PubMed] [Google Scholar]
- ten Wolde S., Hermans J., Breedveld F. C., Dijkmans B. A. Effect of resumption of second line drugs in patients with rheumatoid arthritis that flared up after treatment discontinuation. Ann Rheum Dis. 1997 Apr;56(4):235–239. doi: 10.1136/ard.56.4.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van der Heijden J., de Jong M. C., Dijkmans B. A. C., Lems W. F., Oerlemans R., Kathmann I., Schalkwijk C. G., Scheffer G. L., Scheper R. J., Jansen G. Development of sulfasalazine resistance in human T cells induces expression of the multidrug resistance transporter ABCG2 (BCRP) and augmented production of TNFalpha. Ann Rheum Dis. 2004 Feb;63(2):138–143. doi: 10.1136/ard.2002.005249. [DOI] [PMC free article] [PubMed] [Google Scholar]

