Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Sep;65(9):3513–3519. doi: 10.1128/iai.65.9.3513-3519.1997

Porphyromonas gingivalis lipopolysaccharide-stimulated bone resorption via CD14 is inhibited by broad-spectrum antibiotics.

Y Miyata 1, H Takeda 1, S Kitano 1, S Hanazawa 1
PMCID: PMC175501  PMID: 9284114

Abstract

In the present study, we examined mechanisms of Porphyromonas gingivalis lipopolysaccharide (P-LPS)-stimulated bone resorption via CD14, one of the lipopolysaccharide (LPS) receptors, and also assessed the inhibitory action of several kinds of antibiotics on the LPS-induced stimulation. First, we observed by using mouse embryonic calvarial cells that P-LPS stimulated bone resorption through the action of endogenous interleukin-1beta (IL-1beta) and interleukin-6 (IL-6) via CD14 because (i) P-LPS-stimulated expression of IL-1beta and IL-6 genes in calvarial cells was inhibited by an anti-mouse CD14 antibody, (ii) stimulated bone resorption was markedly inhibited by both IL-1beta and IL-6 antibodies, and (iii) P-LPS-stimulated bone resorption was clearly neutralized by an anti-mouse CD14 antibody. Next, we examined the effects of several kinds of antibiotics on P-LPS-stimulated bone resorption via CD14. Two of them, chloramphenicol and erythromycin, inhibited P-LPS-stimulated bone resorption in a dose-dependent manner. In an additional experiment, we observed that chloramphenicol clearly inhibited P-LPS-stimulated expression of the CD14, IL-1beta, and IL-6 genes in calvarial cells. These results suggest that chloramphenicol might be a useful antibiotic as an anti-inflammatory agent against P-LPS-stimulated periodontal destruction occurring via CD14 in periodontal disease.

Full Text

The Full Text of this article is available as a PDF (632.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agen C., Danesi R., Blandizzi C., Costa M., Stacchini B., Favini P., Del Tacca M. Macrolide antibiotics as antiinflammatory agents: roxithromycin in an unexpected role. Agents Actions. 1993 Jan;38(1-2):85–90. doi: 10.1007/BF02027218. [DOI] [PubMed] [Google Scholar]
  2. Amano S., Hanazawa S., Kawata Y., Ohta K., Kitami H., Kitano S. An assay system utilizing devitalized bone for assessment of differentiation of osteoclast progenitors. J Bone Miner Res. 1992 Mar;7(3):321–328. doi: 10.1002/jbmr.5650070312. [DOI] [PubMed] [Google Scholar]
  3. Bom-van Noorloos A. A., van der Meer J. W., van de Gevel J. S., Schepens E., van Steenbergen T. J., Burger E. H. Bacteroides gingivalis stimulates bone resorption via interleukin-1 production by mononuclear cells. The relative role for B. gingivalis endotoxin. J Clin Periodontol. 1990 Aug;17(7 Pt 1):409–413. doi: 10.1111/j.1600-051x.1990.tb02338.x. [DOI] [PubMed] [Google Scholar]
  4. Dentener M. A., Bazil V., Von Asmuth E. J., Ceska M., Buurman W. A. Involvement of CD14 in lipopolysaccharide-induced tumor necrosis factor-alpha, IL-6 and IL-8 release by human monocytes and alveolar macrophages. J Immunol. 1993 Apr 1;150(7):2885–2891. [PubMed] [Google Scholar]
  5. Fearns C., Kravchenko V. V., Ulevitch R. J., Loskutoff D. J. Murine CD14 gene expression in vivo: extramyeloid synthesis and regulation by lipopolysaccharide. J Exp Med. 1995 Mar 1;181(3):857–866. doi: 10.1084/jem.181.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Frey E. A., Miller D. S., Jahr T. G., Sundan A., Bazil V., Espevik T., Finlay B. B., Wright S. D. Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med. 1992 Dec 1;176(6):1665–1671. doi: 10.1084/jem.176.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gemmell E., Seymour G. J. Interleukin 1, interleukin 6 and transforming growth factor-beta production by human gingival mononuclear cells following stimulation with Porphyromonas gingivalis and Fusobacterium nucleatum. J Periodontal Res. 1993 Mar;28(2):122–129. doi: 10.1111/j.1600-0765.1993.tb01059.x. [DOI] [PubMed] [Google Scholar]
  8. Girasole G., Passeri G., Jilka R. L., Manolagas S. C. Interleukin-11: a new cytokine critical for osteoclast development. J Clin Invest. 1994 Apr;93(4):1516–1524. doi: 10.1172/JCI117130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Golub L. M., Evans R. T., McNamara T. F., Lee H. M., Ramamurthy N. S. A non-antimicrobial tetracycline inhibits gingival matrix metalloproteinases and bone loss in Porphyromonas gingivalis-induced periodontitis in rats. Ann N Y Acad Sci. 1994 Sep 6;732:96–111. doi: 10.1111/j.1749-6632.1994.tb24728.x. [DOI] [PubMed] [Google Scholar]
  10. Golub L. M., Suomalainen K., Sorsa T. Host modulation with tetracyclines and their chemically modified analogues. Curr Opin Dent. 1992 Mar;2:80–90. [PubMed] [Google Scholar]
  11. Hamada S., Takada H., Ogawa T., Fujiwara T., Mihara J. Lipopolysaccharides of oral anaerobes associated with chronic inflammation: chemical and immunomodulating properties. Int Rev Immunol. 1990;6(4):247–261. doi: 10.3109/08830189009056635. [DOI] [PubMed] [Google Scholar]
  12. Han J., Lee J. D., Tobias P. S., Ulevitch R. J. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J Biol Chem. 1993 Nov 25;268(33):25009–25014. [PubMed] [Google Scholar]
  13. Hanazawa S., Kawata Y., Takeshita A., Kumada H., Okithu M., Tanaka S., Yamamoto Y., Masuda T., Umemoto T., Kitano S. Expression of monocyte chemoattractant protein 1 (MCP-1) in adult periodontal disease: increased monocyte chemotactic activity in crevicular fluids and induction of MCP-1 expression in gingival tissues. Infect Immun. 1993 Dec;61(12):5219–5224. doi: 10.1128/iai.61.12.5219-5224.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hanazawa S., Nakada K., Ohmori Y., Miyoshi T., Amano S., Kitano S. Functional role of interleukin 1 in periodontal disease: induction of interleukin 1 production by Bacteroides gingivalis lipopolysaccharide in peritoneal macrophages from C3H/HeN and C3H/HeJ mice. Infect Immun. 1985 Oct;50(1):262–270. doi: 10.1128/iai.50.1.262-270.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hanazawa S., Takeshita A., Amano S., Semba T., Nirazuka T., Katoh H., Kitano S. Tumor necrosis factor-alpha induces expression of monocyte chemoattractant JE via fos and jun genes in clonal osteoblastic MC3T3-E1 cells. J Biol Chem. 1993 May 5;268(13):9526–9532. [PubMed] [Google Scholar]
  16. Haziot A., Rong G. W., Bazil V., Silver J., Goyert S. M. Recombinant soluble CD14 inhibits LPS-induced tumor necrosis factor-alpha production by cells in whole blood. J Immunol. 1994 Jun 15;152(12):5868–5876. [PubMed] [Google Scholar]
  17. Haziot A., Rong G. W., Silver J., Goyert S. M. Recombinant soluble CD14 mediates the activation of endothelial cells by lipopolysaccharide. J Immunol. 1993 Aug 1;151(3):1500–1507. [PubMed] [Google Scholar]
  18. Haziot A., Tsuberi B. Z., Goyert S. M. Neutrophil CD14: biochemical properties and role in the secretion of tumor necrosis factor-alpha in response to lipopolysaccharide. J Immunol. 1993 Jun 15;150(12):5556–5565. [PubMed] [Google Scholar]
  19. Keicho N., Sawada S., Kitamura K., Yotsumoto H., Takaku F. Effects of an immunosuppressant, FK506, on interleukin 1 alpha production by human macrophages and a macrophage-like cell line, U937. Cell Immunol. 1991 Feb;132(2):285–294. doi: 10.1016/0008-8749(91)90028-a. [DOI] [PubMed] [Google Scholar]
  20. Kumada H., Haishima Y., Umemoto T., Tanamoto K. Structural study on the free lipid A isolated from lipopolysaccharide of Porphyromonas gingivalis. J Bacteriol. 1995 Apr;177(8):2098–2106. doi: 10.1128/jb.177.8.2098-2106.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Manolagas S. C., Bellido T., Jilka R. L. New insights into the cellular, biochemical, and molecular basis of postmenopausal and senile osteoporosis: roles of IL-6 and gp130. Int J Immunopharmacol. 1995 Feb;17(2):109–116. doi: 10.1016/0192-0561(94)00089-7. [DOI] [PubMed] [Google Scholar]
  22. Orcel P., Feuga M., Bielakoff J., De Vernejoul M. C. Local bone injections of LPS and M-CSF increase bone resorption by different pathways in vivo in rats. Am J Physiol. 1993 Mar;264(3 Pt 1):E391–E397. doi: 10.1152/ajpendo.1993.264.3.E391. [DOI] [PubMed] [Google Scholar]
  23. Poli V., Balena R., Fattori E., Markatos A., Yamamoto M., Tanaka H., Ciliberto G., Rodan G. A., Costantini F. Interleukin-6 deficient mice are protected from bone loss caused by estrogen depletion. EMBO J. 1994 Mar 1;13(5):1189–1196. doi: 10.1002/j.1460-2075.1994.tb06368.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pugin J., Schürer-Maly C. C., Leturcq D., Moriarty A., Ulevitch R. J., Tobias P. S. Lipopolysaccharide activation of human endothelial and epithelial cells is mediated by lipopolysaccharide-binding protein and soluble CD14. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2744–2748. doi: 10.1073/pnas.90.7.2744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rifkin B. R., Vernillo A. T., Golub L. M., Ramamurthy N. S. Modulation of bone resorption by tetracyclines. Ann N Y Acad Sci. 1994 Sep 6;732:165–180. doi: 10.1111/j.1749-6632.1994.tb24733.x. [DOI] [PubMed] [Google Scholar]
  26. Shapira L., Takashiba S., Amar S., Van Dyke T. E. Porphyromonas gingivalis lipopolysaccharide stimulation of human monocytes: dependence on serum and CD14 receptor. Oral Microbiol Immunol. 1994 Apr;9(2):112–117. doi: 10.1111/j.1399-302x.1994.tb00044.x. [DOI] [PubMed] [Google Scholar]
  27. Sismey-Durrant H. J., Hopps R. M. The effect of lipopolysaccharide from the oral bacterium Bacteroides gingivalis on osteoclastic resorption of sperm-whale dentine slices in vitro. Arch Oral Biol. 1987;32(12):911–913. doi: 10.1016/0003-9969(87)90106-3. [DOI] [PubMed] [Google Scholar]
  28. Takada H., Mihara J., Morisaki I., Hamada S. Induction of interleukin-1 and -6 in human gingival fibroblast cultures stimulated with Bacteroides lipopolysaccharides. Infect Immun. 1991 Jan;59(1):295–301. doi: 10.1128/iai.59.1.295-301.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takizawa H., Desaki M., Ohtoshi T., Kikutani T., Okazaki H., Sato M., Akiyama N., Shoji S., Hiramatsu K., Ito K. Erythromycin suppresses interleukin 6 expression by human bronchial epithelial cells: a potential mechanism of its anti-inflammatory action. Biochem Biophys Res Commun. 1995 May 25;210(3):781–786. doi: 10.1006/bbrc.1995.1727. [DOI] [PubMed] [Google Scholar]
  30. Tamura M., Tokuda M., Nagaoka S., Takada H. Lipopolysaccharides of Bacteroides intermedius (Prevotella intermedia) and Bacteroides (Porphyromonas) gingivalis induce interleukin-8 gene expression in human gingival fibroblast cultures. Infect Immun. 1992 Nov;60(11):4932–4937. doi: 10.1128/iai.60.11.4932-4937.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tobias P. S., Ulevitch R. J. Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology. 1993 Apr;187(3-5):227–232. doi: 10.1016/S0171-2985(11)80341-4. [DOI] [PubMed] [Google Scholar]
  32. Ulevitch R. J. Recognition of bacterial endotoxins by receptor-dependent mechanisms. Adv Immunol. 1993;53:267–289. doi: 10.1016/s0065-2776(08)60502-7. [DOI] [PubMed] [Google Scholar]
  33. Umeki S. Anti-inflammatory action of erythromycin. Its inhibitory effect on neutrophil NADPH oxidase activity. Chest. 1993 Oct;104(4):1191–1193. doi: 10.1378/chest.104.4.1191. [DOI] [PubMed] [Google Scholar]
  34. Watanabe A., Takeshita A., Kitano S., Hanazawa S. CD14-mediated signal pathway of Porphyromonas gingivalis lipopolysaccharide in human gingival fibroblasts. Infect Immun. 1996 Nov;64(11):4488–4494. doi: 10.1128/iai.64.11.4488-4494.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weinstein S. L., Sanghera J. S., Lemke K., DeFranco A. L., Pelech S. L. Bacterial lipopolysaccharide induces tyrosine phosphorylation and activation of mitogen-activated protein kinases in macrophages. J Biol Chem. 1992 Jul 25;267(21):14955–14962. [PubMed] [Google Scholar]
  36. Weir E. C., Insogna K. L., Horowitz M. C. Osteoblast-like cells secrete granulocyte-macrophage colony-stimulating factor in response to parathyroid hormone and lipopolysaccharide. Endocrinology. 1989 Feb;124(2):899–904. doi: 10.1210/endo-124-2-899. [DOI] [PubMed] [Google Scholar]
  37. Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science. 1990 Sep 21;249(4975):1431–1433. doi: 10.1126/science.1698311. [DOI] [PubMed] [Google Scholar]
  38. Ziegler-Heitbrock H. W., Ulevitch R. J. CD14: cell surface receptor and differentiation marker. Immunol Today. 1993 Mar;14(3):121–125. doi: 10.1016/0167-5699(93)90212-4. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES