Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2004 Jul;63(7):857–861. doi: 10.1136/ard.2003.007302

Effects of ibuprofen on molecular markers of cartilage and synovium turnover in patients with knee osteoarthritis

E Gineyts 1, J Mo 1, A Ko 1, D Henriksen 1, S Curtis 1, B Gertz 1, P Garnero 1, P Delmas 1
PMCID: PMC1755067  PMID: 15194584

Abstract

Objective: The aim of this study was to evaluate the effect of ibuprofen on the urinary excretion of C-terminal crosslinking telopeptide of type II collagen (CTX-II) and urinary glucosyl galactosyl pyridinoline (Glc-Gal-PYD), two new molecular markers of cartilage and synovial tissue metabolism, respectively, in patients with knee osteoarthritis (OA).

Methods: We studied 201 patients with knee pain and radiographic evidence of knee OA who were on treatment with non-steroidal anti-inflammatory drugs (NSAIDs) prior to study initiation. After an initial screening visit, patients were withdrawn from their pre-study NSAID and, following a flare of their OA symptoms, were randomised to ibuprofen (2400 mg/day) or placebo. Urinary CTX-II and Glc-Gal-PYD levels were measured at time of randomisation (baseline) and after 4–6 weeks of treatment.

Results: After 4 to 6 weeks, urinary CTX-II (+17%, p = 0.023) and Glc-Gal-PYD (+10%, p = 0.020) increased significantly from baseline in the placebo group whereas marginal or no increase was observed in the ibuprofen group (CTX-II +2%, NS and Glc-Gal-PYD +4%, p = 0.045). For urinary CTX-II, the difference in the change from baseline between placebo and ibuprofen treated groups was significant (13%, p = 0.017). At baseline, urinary levels of CTX-II and Glc-Gal-PYD were higher in patients with knee swelling (n = 127) than in those without (n = 74) (p<0.02 for both markers). When patients were stratified according to presence or absence of knee swelling at baseline, the increases over 4–6 weeks of urinary CTX-II and Glc-Gal-PYD in the placebo group were restricted to patients with knee swelling (+22% from baseline, p = 0.001 and +12%, p = 0.011, for urinary CTX-II and Glc-Gal-PYD respectively). In patients with knee swelling who were treated with ibuprofen this increase was not observed and the difference from placebo was significant for urinary CTX-II (p = 0.014).

Conclusion: In patients with a flare of knee OA, specifically in patients with evidence of joint inflammation documented by knee swelling, there was a significant increase in markers reflecting cartilage and synovium metabolism that could partly be prevented by high doses of ibuprofen. These data suggest that patients with a flare of knee OA are characterised by increased cartilage and synovial tissue degradation, which may be partly prevented by high doses of NSAIDs.

Full Text

The Full Text of this article is available as a PDF (84.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baum C., Kennedy D. L., Forbes M. B. Utilization of nonsteroidal antiinflammatory drugs. Arthritis Rheum. 1985 Jun;28(6):686–692. doi: 10.1002/art.1780280613. [DOI] [PubMed] [Google Scholar]
  2. Blot L., Marcelis A., Devogelaer J. P., Manicourt D. H. Effects of diclofenac, aceclofenac and meloxicam on the metabolism of proteoglycans and hyaluronan in osteoarthritic human cartilage. Br J Pharmacol. 2000 Dec;131(7):1413–1421. doi: 10.1038/sj.bjp.0703710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandt K. D. Effects of nonsteroidal anti-inflammatory drugs on chondrocyte metabolism in vitro and in vivo. Am J Med. 1987 Nov 20;83(5A):29–34. doi: 10.1016/0002-9343(87)90848-5. [DOI] [PubMed] [Google Scholar]
  4. Christgau S., Garnero P., Fledelius C., Moniz C., Ensig M., Gineyts E., Rosenquist C., Qvist P. Collagen type II C-telopeptide fragments as an index of cartilage degradation. Bone. 2001 Sep;29(3):209–215. doi: 10.1016/s8756-3282(01)00504-x. [DOI] [PubMed] [Google Scholar]
  5. Dingle J. T. The effect of nonsteroidal antiinflammatory drugs on human articular cartilage glycosaminoglycan synthesis. Osteoarthritis Cartilage. 1999 May;7(3):313–314. doi: 10.1053/joca.1998.0176. [DOI] [PubMed] [Google Scholar]
  6. Dooley M., Spencer C. M., Dunn C. J. Aceclofenac: a reappraisal of its use in the management of pain and rheumatic disease. Drugs. 2001;61(9):1351–1378. doi: 10.2165/00003495-200161090-00012. [DOI] [PubMed] [Google Scholar]
  7. Felson D. T., Lawrence R. C., Dieppe P. A., Hirsch R., Helmick C. G., Jordan J. M., Kington R. S., Lane N. E., Nevitt M. C., Zhang Y. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med. 2000 Oct 17;133(8):635–646. doi: 10.7326/0003-4819-133-8-200010170-00016. [DOI] [PubMed] [Google Scholar]
  8. Fernandes J. C., Caron J. P., Martel-Pelletier J., Jovanovic D., Mineau F., Tardif G., Otterness I. G., Pelletier J. P. Effects of tenidap on the progression of osteoarthritic lesions in a canine experimental model. Suppression of metalloprotease and interleukin-1 activity. Arthritis Rheum. 1997 Feb;40(2):284–294. doi: 10.1002/art.1780400213. [DOI] [PubMed] [Google Scholar]
  9. Fernandes J. C., Martel-Pelletier J., Jovanovic D., Tardif G., DiBattista J. A., Lascau-Coman V., Otterness I. G., Pelletier J. P. The effects of tenidap on canine experimental osteoarthritis: II. Study of the expression of collagenase-1 and interleukin 1beta by in situ hybridization. J Rheumatol. 1998 May;25(5):951–958. [PubMed] [Google Scholar]
  10. Garnero P., Christgau S., Delmas P. D. The bisphosphonate zoledronate decreases type II collagen breakdown in patients with Paget's disease of bone. Bone. 2001 May;28(5):461–464. doi: 10.1016/s8756-3282(01)00431-8. [DOI] [PubMed] [Google Scholar]
  11. Garnero P., Piperno M., Gineyts E., Christgau S., Delmas P. D., Vignon E. Cross sectional evaluation of biochemical markers of bone, cartilage, and synovial tissue metabolism in patients with knee osteoarthritis: relations with disease activity and joint damage. Ann Rheum Dis. 2001 Jun;60(6):619–626. doi: 10.1136/ard.60.6.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garnero P., Rousseau J. C., Delmas P. D. Molecular basis and clinical use of biochemical markers of bone, cartilage, and synovium in joint diseases. Arthritis Rheum. 2000 May;43(5):953–968. doi: 10.1002/1529-0131(200005)43:5<953::AID-ANR1>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  13. Garnero Patrick, Gineyts Evelyne, Christgau Stephan, Finck Barbara, Delmas Pierre D. Association of baseline levels of urinary glucosyl-galactosyl-pyridinoline and type II collagen C-telopeptide with progression of joint destruction in patients with early rheumatoid arthritis. Arthritis Rheum. 2002 Jan;46(1):21–30. doi: 10.1002/1529-0131(200201)46:1<21::AID-ART10061>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  14. Garnero Patrick, Landewé Robert, Boers Maarten, Verhoeven Arco, Van Der Linden Sjef, Christgau Stephan, Van Der Heijde Désirée, Boonen Annelies, Geusens Piet. Association of baseline levels of markers of bone and cartilage degradation with long-term progression of joint damage in patients with early rheumatoid arthritis: the COBRA study. Arthritis Rheum. 2002 Nov;46(11):2847–2856. doi: 10.1002/art.10616. [DOI] [PubMed] [Google Scholar]
  15. Gencosmanoglu B. E., Eryavuz M., Dervisoglu S. Effects of some nonsteroidal anti-inflammatory drugs on articular cartilage of rats in an experimental model of osteoarthritis. Res Exp Med (Berl) 2001 Mar;200(3):215–226. [PubMed] [Google Scholar]
  16. Gineyts E., Garnero P., Delmas P. D. Urinary excretion of glucosyl-galactosyl pyridinoline: a specific biochemical marker of synovium degradation. Rheumatology (Oxford) 2001 Mar;40(3):315–323. doi: 10.1093/rheumatology/40.3.315. [DOI] [PubMed] [Google Scholar]
  17. Hochberg M. C., Altman R. D., Brandt K. D., Clark B. M., Dieppe P. A., Griffin M. R., Moskowitz R. W., Schnitzer T. J. Guidelines for the medical management of osteoarthritis. Part I. Osteoarthritis of the hip. American College of Rheumatology. Arthritis Rheum. 1995 Nov;38(11):1535–1540. doi: 10.1002/art.1780381103. [DOI] [PubMed] [Google Scholar]
  18. Hochberg M. C., Altman R. D., Brandt K. D., Clark B. M., Dieppe P. A., Griffin M. R., Moskowitz R. W., Schnitzer T. J. Guidelines for the medical management of osteoarthritis. Part II. Osteoarthritis of the knee. American College of Rheumatology. Arthritis Rheum. 1995 Nov;38(11):1541–1546. doi: 10.1002/art.1780381104. [DOI] [PubMed] [Google Scholar]
  19. Hwa S. Y., Burkhardt D., Little C., Ghosh P. The effects of orally administered diacerein on cartilage and subchondral bone in an ovine model of osteoarthritis. J Rheumatol. 2001 Apr;28(4):825–834. [PubMed] [Google Scholar]
  20. Podworny N. V., Kandel R. A., Renlund R. C., Grynpas M. D. Partial chondroprotective effect of zoledronate in a rabbit model of inflammatory arthritis. J Rheumatol. 1999 Sep;26(9):1972–1982. [PubMed] [Google Scholar]
  21. Rainsford K. D. Mechanisms of NSAIDs on joint destruction in osteoarthritis. Agents Actions Suppl. 1993;44:39–43. [PubMed] [Google Scholar]
  22. Ratcliffe A., Azzo W., Saed-Nejad F., Lane N., Rosenwasser M. P., Mow V. C. In vivo effects of naproxen on composition, proteoglycan metabolism, and matrix metalloproteinase activities in canine articular cartilage. J Orthop Res. 1993 Mar;11(2):163–171. doi: 10.1002/jor.1100110203. [DOI] [PubMed] [Google Scholar]
  23. Ravaud P., Giraudeau B., Auleley G. R., Drape J. L., Rousselin B., Paolozzi L., Chastang C., Dougados M. Variability in knee radiographing: implication for definition of radiological progression in medial knee osteoarthritis. Ann Rheum Dis. 1998 Oct;57(10):624–629. doi: 10.1136/ard.57.10.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saag K., van der Heijde D., Fisher C., Samara A., DeTora L., Bolognese J., Sperling R., Daniels B. Rofecoxib, a new cyclooxygenase 2 inhibitor, shows sustained efficacy, comparable with other nonsteroidal anti-inflammatory drugs: a 6-week and a 1-year trial in patients with osteoarthritis. Osteoarthritis Studies Group. Arch Fam Med. 2000 Nov-Dec;9(10):1124–1134. doi: 10.1001/archfami.9.10.1124. [DOI] [PubMed] [Google Scholar]
  25. Serni U., Mannoni A., Benucci M. Is there preliminary in-vivo evidence for an influence of nonsteroidal antiinflammatory drugs on progression in osteoarthritis? Part II-evidence from animal models. Osteoarthritis Cartilage. 1999 May;7(3):351–352. doi: 10.1053/joca.1998.0195. [DOI] [PubMed] [Google Scholar]
  26. Tamura T., Kosaka N., Ishiwa J., Sato T., Nagase H., Ito A. Rhein, an active metabolite of diacerein, down-regulates the production of pro-matrix metalloproteinases-1, -3, -9 and -13 and up-regulates the production of tissue inhibitor of metalloproteinase-1 in cultured rabbit articular chondrocytes. Osteoarthritis Cartilage. 2001 Apr;9(3):257–263. doi: 10.1053/joca.2000.0383. [DOI] [PubMed] [Google Scholar]
  27. Vignon E., Garnero P., Delmas P., Avouac B., Bettica P., Boers M., Ehrich E., MacKillop N., Rovati L., Serni U. Recommendations for the registration of drugs used in the treatment of osteoarthritis: an update on biochemical markers. Osteoarthritis Cartilage. 2001 May;9(4):289–293. doi: 10.1053/joca.2000.0387. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES