Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Sep;65(9):3561–3570. doi: 10.1128/iai.65.9.3561-3570.1997

Bacteroides fragilis toxin exhibits polar activity on monolayers of human intestinal epithelial cells (T84 cells) in vitro.

F G Chambers 1, S S Koshy 1, R F Saidi 1, D P Clark 1, R D Moore 1, C L Sears 1
PMCID: PMC175507  PMID: 9284120

Abstract

Strains of Bacteroides fragilis associated with diarrhea in children (termed enterotoxigenic B. fragilis, or ETBF) produce a heat-labile ca. 20-kDa protein toxin (BFT). The purpose of this study was to examine the activity of BFT on polarized monolayers of human intestinal epithelial cells (T84 cells). In Ussing chambers, BFT had two effects. First, BFT applied to either the apical or basolateral surfaces of T84 monolayers diminished monolayer resistance. However, the time course, magnitude, and concentration dependency differed when BFT was applied to the apical versus basolateral membranes. Second, only basolateral BFT stimulated a concentration-dependent and short-lived increase in short circuit current (Isc; indicative of C1- secretion). Time course experiments indicated that Isc returned to baseline as resistance continued to decrease, indicating that these two electrophysiologic responses to BFT are distinct. Light microscopic studies of BFT-treated monolayers revealed only localized cellular changes after apical BFT, whereas basolateral BFT rapidly altered the morphology of nearly every cell in the monolayer. Transmission and scanning electron microscopy after basolateral BFT confirmed a striking loss of cellular microvilli and complete dissolution of some tight junctions (zonula occludens) and zonula adherens without loss of desmosomes. The F-actin structure of BFT-treated monolayers (stained with rhodamine-phalloidin) revealed diminished and flocculated staining at the apical tight junctional ring and thickening of F-actin microfilaments in focal contacts at the basolateral monolayer surface compared to those in similarly stained control monolayers. BFT did not injure T84 monolayers, as assessed by lactic dehydrogenase release and protein synthesis assays. These studies indicate that BFT is a nonlethal toxin which acts in a polar manner on T84 monolayers to stimulate C1- secretion and to diminish monolayer resistance by altering the apical F-actin structure of these cells. BFT may contribute to diarrheal disease associated with ETBF infection by altering epithelial barrier function and stimulating C1- secretion.

Full Text

The Full Text of this article is available as a PDF (749.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Van Itallie C. M. Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol. 1995 Oct;269(4 Pt 1):G467–G475. doi: 10.1152/ajpgi.1995.269.4.G467. [DOI] [PubMed] [Google Scholar]
  2. Barrett K. E. Positive and negative regulation of chloride secretion in T84 cells. Am J Physiol. 1993 Oct;265(4 Pt 1):C859–C868. doi: 10.1152/ajpcell.1993.265.4.C859. [DOI] [PubMed] [Google Scholar]
  3. Costa de Beauregard M. A., Pringault E., Robine S., Louvard D. Suppression of villin expression by antisense RNA impairs brush border assembly in polarized epithelial intestinal cells. EMBO J. 1995 Feb 1;14(3):409–421. doi: 10.1002/j.1460-2075.1995.tb07017.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donelli G., Fabbri A., Fiorentini C. Bacteroides fragilis enterotoxin induces cytoskeletal changes and surface blebbing in HT-29 cells. Infect Immun. 1996 Jan;64(1):113–119. doi: 10.1128/iai.64.1.113-119.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Drubin D. G., Nelson W. J. Origins of cell polarity. Cell. 1996 Feb 9;84(3):335–344. doi: 10.1016/s0092-8674(00)81278-7. [DOI] [PubMed] [Google Scholar]
  6. Fasano A., Fiorentini C., Donelli G., Uzzau S., Kaper J. B., Margaretten K., Ding X., Guandalini S., Comstock L., Goldblum S. E. Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J Clin Invest. 1995 Aug;96(2):710–720. doi: 10.1172/JCI118114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Goldberg M. B., Sansonetti P. J. Shigella subversion of the cellular cytoskeleton: a strategy for epithelial colonization. Infect Immun. 1993 Dec;61(12):4941–4946. doi: 10.1128/iai.61.12.4941-4946.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hecht G., Koutsouris A., Pothoulakis C., LaMont J. T., Madara J. L. Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology. 1992 Feb;102(2):416–423. doi: 10.1016/0016-5085(92)90085-d. [DOI] [PubMed] [Google Scholar]
  9. Hecht G., Pothoulakis C., LaMont J. T., Madara J. L. Clostridium difficile toxin A perturbs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest. 1988 Nov;82(5):1516–1524. doi: 10.1172/JCI113760. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Just I., Selzer J., Wilm M., von Eichel-Streiber C., Mann M., Aktories K. Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature. 1995 Jun 8;375(6531):500–503. doi: 10.1038/375500a0. [DOI] [PubMed] [Google Scholar]
  11. Just I., Wilm M., Selzer J., Rex G., von Eichel-Streiber C., Mann M., Aktories K. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem. 1995 Jun 9;270(23):13932–13936. doi: 10.1074/jbc.270.23.13932. [DOI] [PubMed] [Google Scholar]
  12. Kato N., Karuniawati A., Jotwani R., Kato H., Watanabe K., Ueno K. Isolation of enterotoxigenic Bacteroides fragilis from extraintestinal sites by cell culture assay. Clin Infect Dis. 1995 Jun;20 (Suppl 2):S141–S141. doi: 10.1093/clinids/20.supplement_2.s141. [DOI] [PubMed] [Google Scholar]
  13. Khurana S., Kreydiyyeh S., Aronzon A., Hoogerwerf W. A., Rhee S. G., Donowitz M., Cohen M. E. Asymmetric signal transduction in polarized ileal Na(+)-absorbing cells: carbachol activates brush-border but not basolateral-membrane PIP2-PLC and translocates PLC-gamma 1 only to the brush border. Biochem J. 1996 Jan 15;313(Pt 2):509–518. doi: 10.1042/bj3130509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Koshy S. S., Montrose M. H., Sears C. L. Human intestinal epithelial cells swell and demonstrate actin rearrangement in response to the metalloprotease toxin of Bacteroides fragilis. Infect Immun. 1996 Dec;64(12):5022–5028. doi: 10.1128/iai.64.12.5022-5028.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levine S. A., Donowitz M., Watson A. J., Sharp G. W., Crane J. K., Weikel C. S. Characterization of the synergistic interaction of Escherichia coli heat-stable toxin and carbachol. Am J Physiol. 1991 Oct;261(4 Pt 1):G592–G601. doi: 10.1152/ajpgi.1991.261.4.G592. [DOI] [PubMed] [Google Scholar]
  16. McCormick B. A., Colgan S. P., Delp-Archer C., Miller S. I., Madara J. L. Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol. 1993 Nov;123(4):895–907. doi: 10.1083/jcb.123.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mengaud J., Ohayon H., Gounon P., Mege R-M, Cossart P. E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell. 1996 Mar 22;84(6):923–932. doi: 10.1016/s0092-8674(00)81070-3. [DOI] [PubMed] [Google Scholar]
  18. Moncrief J. S., Obiso R., Jr, Barroso L. A., Kling J. J., Wright R. L., Van Tassell R. L., Lyerly D. M., Wilkins T. D. The enterotoxin of Bacteroides fragilis is a metalloprotease. Infect Immun. 1995 Jan;63(1):175–181. doi: 10.1128/iai.63.1.175-181.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mundy L. M., Sears C. L. Detection of toxin production by Bacteroides fragilis: assay development and screening of extraintestinal clinical isolates. Clin Infect Dis. 1996 Aug;23(2):269–276. doi: 10.1093/clinids/23.2.269. [DOI] [PubMed] [Google Scholar]
  20. Myers L. L., Firehammer B. D., Shoop D. S., Border M. M. Bacteroides fragilis: a possible cause of acute diarrheal disease in newborn lambs. Infect Immun. 1984 May;44(2):241–244. doi: 10.1128/iai.44.2.241-244.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Obiso R. J., Jr, Azghani A. O., Wilkins T. D. The Bacteroides fragilis toxin fragilysin disrupts the paracellular barrier of epithelial cells. Infect Immun. 1997 Apr;65(4):1431–1439. doi: 10.1128/iai.65.4.1431-1439.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Obiso R. J., Jr, Lyerly D. M., Van Tassell R. L., Wilkins T. D. Proteolytic activity of the Bacteroides fragilis enterotoxin causes fluid secretion and intestinal damage in vivo. Infect Immun. 1995 Oct;63(10):3820–3826. doi: 10.1128/iai.63.10.3820-3826.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pantosti A., Cerquetti M., Colangeli R., D'Ambrosio F. Detection of intestinal and extra-intestinal strains of enterotoxigenic Bacteroides fragilis by the HT-29 cytotoxicity assay. J Med Microbiol. 1994 Sep;41(3):191–196. doi: 10.1099/00222615-41-3-191. [DOI] [PubMed] [Google Scholar]
  24. Philpott D. J., McKay D. M., Sherman P. M., Perdue M. H. Infection of T84 cells with enteropathogenic Escherichia coli alters barrier and transport functions. Am J Physiol. 1996 Apr;270(4 Pt 1):G634–G645. doi: 10.1152/ajpgi.1996.270.4.G634. [DOI] [PubMed] [Google Scholar]
  25. Sack R. B., Albert M. J., Alam K., Neogi P. K., Akbar M. S. Isolation of enterotoxigenic Bacteroides fragilis from Bangladeshi children with diarrhea: a controlled study. J Clin Microbiol. 1994 Apr;32(4):960–963. doi: 10.1128/jcm.32.4.960-963.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sack R. B., Myers L. L., Almeido-Hill J., Shoop D. S., Bradbury W. C., Reid R., Santosham M. Enterotoxigenic Bacteroides fragilis: epidemiologic studies of its role as a human diarrhoeal pathogen. J Diarrhoeal Dis Res. 1992 Mar;10(1):4–9. [PubMed] [Google Scholar]
  27. Saidi R. F., Jaeger K., Montrose M. H., Wu S., Sears C. L. Bacteroides fragilis toxin rearranges the actin cytoskeleton of HT29/C1 cells without direct proteolysis of actin or decrease in F-actin content. Cell Motil Cytoskeleton. 1997;37(2):159–165. doi: 10.1002/(SICI)1097-0169(1997)37:2<159::AID-CM8>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  28. Saidi R. F., Sears C. L. Bacteroides fragilis toxin rapidly intoxicates human intestinal epithelial cells (HT29/C1) in vitro. Infect Immun. 1996 Dec;64(12):5029–5034. doi: 10.1128/iai.64.12.5029-5034.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. San Joaquin V. H., Griffis J. C., Lee C., Sears C. L. Association of Bacteroides fragilis with childhood diarrhea. Scand J Infect Dis. 1995;27(3):211–215. doi: 10.3109/00365549509019011. [DOI] [PubMed] [Google Scholar]
  30. Sears C. L., Firoozmand F., Mellander A., Chambers F. G., Eromar I. G., Bot A. G., Scholte B., De Jonge H. R., Donowitz M. Genistein and tyrphostin 47 stimulate CFTR-mediated Cl- secretion in T84 cell monolayers. Am J Physiol. 1995 Dec;269(6 Pt 1):G874–G882. doi: 10.1152/ajpgi.1995.269.6.G874. [DOI] [PubMed] [Google Scholar]
  31. Sears C. L., Myers L. L., Lazenby A., Van Tassell R. L. Enterotoxigenic Bacteroides fragilis. Clin Infect Dis. 1995 Jun;20 (Suppl 2):S142–S148. doi: 10.1093/clinids/20.supplement_2.s142. [DOI] [PubMed] [Google Scholar]
  32. Shapiro M., Matthews J., Hecht G., Delp C., Madara J. L. Stabilization of F-actin prevents cAMP-elicited Cl- secretion in T84 cells. J Clin Invest. 1991 Jun;87(6):1903–1909. doi: 10.1172/JCI115215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Spitz J., Yuhan R., Koutsouris A., Blatt C., Alverdy J., Hecht G. Enteropathogenic Escherichia coli adherence to intestinal epithelial monolayers diminishes barrier function. Am J Physiol. 1995 Feb;268(2 Pt 1):G374–G379. doi: 10.1152/ajpgi.1995.268.2.G374. [DOI] [PubMed] [Google Scholar]
  34. Van Tassell R. L., Lyerly D. M., Wilkins T. D. Purification and characterization of an enterotoxin from Bacteroides fragilis. Infect Immun. 1992 Apr;60(4):1343–1350. doi: 10.1128/iai.60.4.1343-1350.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Weikel C. S., Grieco F. D., Reuben J., Myers L. L., Sack R. B. Human colonic epithelial cells, HT29/C1, treated with crude Bacteroides fragilis enterotoxin dramatically alter their morphology. Infect Immun. 1992 Feb;60(2):321–327. doi: 10.1128/iai.60.2.321-327.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wells C. L., van de Westerlo E. M., Jechorek R. P., Feltis B. A., Wilkins T. D., Erlandsen S. L. Bacteroides fragilis enterotoxin modulates epithelial permeability and bacterial internalization by HT-29 enterocytes. Gastroenterology. 1996 May;110(5):1429–1437. doi: 10.1053/gast.1996.v110.pm8613048. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES