Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Sep;65(9):3648–3653. doi: 10.1128/iai.65.9.3648-3653.1997

Specificity and functional activity of anti-Burkholderia pseudomallei polysaccharide antibodies.

M Ho 1, T Schollaardt 1, M D Smith 1, M B Perry 1, P J Brett 1, W Chaowagul 1, L E Bryan 1
PMCID: PMC175519  PMID: 9284132

Abstract

The lipopolysaccharide (LPS) of Burkholderia pseudomallei, the causative agent of melioidosis, consists of two O-antigenic polysaccharides designated O-PS I and O-PS II. In this study, the O-PS specificity and functional activity of a protective polyclonal antiserum and an immunoglobulin M (IgM) monoclonal antibody were determined. The polyclonal antiserum recognized both O-PS I and O-PS II, while the monoclonal antibody was O-PS II specific. Both mediated phagocytic killing of B. pseudomallei by polymorphonuclear leukocytes. Patients acutely infected with B. pseudomallei also produced antibodies to the two O-PSs, but these antibodies were not produced by asymptomatic individuals from an area of endemicity who were seropositive by an indirect hemagglutination test using sonicated heat-killed whole organisms as antigen. IgM antibodies were detected only in patients with localized infection. IgG antibodies were detected in all acutely infected patients, but there was no significant difference in antibody levels among patients with localized infection, patients who survived septicemic illness, and patients who died from septicemic illness. Further analysis of the IgG response revealed production of IgG1 and IgG2 antibodies by all patient groups, while an IgG3 response was seen only in survivors of septicemic infection. IgG4 was not detectable even when a fivefold-lower serum dilution was used. Patient sera also mediated phagocytic killing by polymorphonuclear leukocytes, and the killing effect was enhanced by complement. These results suggest that antibodies to the LPS O-polysaccharides of B. pseudomallei are protective by promoting phagocytic killing. The antibodies develop during human infection and may facilitate clearance of the organisms, as seen in a diabetic rat model of B. pseudomallei infection.

Full Text

The Full Text of this article is available as a PDF (161.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aase A., Michaelsen T. E. Opsonophagocytic activity induced by chimeric antibodies of the four human IgG subclasses with or without help from complement. Scand J Immunol. 1994 Jun;39(6):581–587. doi: 10.1111/j.1365-3083.1994.tb03416.x. [DOI] [PubMed] [Google Scholar]
  2. Bouharoun-Tayoun H., Druilhe P. Plasmodium falciparum malaria: evidence for an isotype imbalance which may be responsible for delayed acquisition of protective immunity. Infect Immun. 1992 Apr;60(4):1473–1481. doi: 10.1128/iai.60.4.1473-1481.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brett P. J., Mah D. C., Woods D. E. Isolation and characterization of Pseudomonas pseudomallei flagellin proteins. Infect Immun. 1994 May;62(5):1914–1919. doi: 10.1128/iai.62.5.1914-1919.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brett P. J., Woods D. E. Structural and immunological characterization of Burkholderia pseudomallei O-polysaccharide-flagellin protein conjugates. Infect Immun. 1996 Jul;64(7):2824–2828. doi: 10.1128/iai.64.7.2824-2828.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chaowagul W., Suputtamongkol Y., Dance D. A., Rajchanuvong A., Pattara-arechachai J., White N. J. Relapse in melioidosis: incidence and risk factors. J Infect Dis. 1993 Nov;168(5):1181–1185. [PubMed] [Google Scholar]
  6. Chaowagul W., White N. J., Dance D. A., Wattanagoon Y., Naigowit P., Davis T. M., Looareesuwan S., Pitakwatchara N. Melioidosis: a major cause of community-acquired septicemia in northeastern Thailand. J Infect Dis. 1989 May;159(5):890–899. doi: 10.1093/infdis/159.5.890. [DOI] [PubMed] [Google Scholar]
  7. Dance D. A. Melioidosis: the tip of the iceberg? Clin Microbiol Rev. 1991 Jan;4(1):52–60. doi: 10.1128/cmr.4.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Egan A. M., Gordon D. L. Burkholderia pseudomallei activates complement and is ingested but not killed by polymorphonuclear leukocytes. Infect Immun. 1996 Dec;64(12):4952–4959. doi: 10.1128/iai.64.12.4952-4959.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jones A. L., Beveridge T. J., Woods D. E. Intracellular survival of Burkholderia pseudomallei. Infect Immun. 1996 Mar;64(3):782–790. doi: 10.1128/iai.64.3.782-790.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kanaphun P., Thirawattanasuk N., Suputtamongkol Y., Naigowit P., Dance D. A., Smith M. D., White N. J. Serology and carriage of Pseudomonas pseudomallei: a prospective study in 1000 hospitalized children in northeast Thailand. J Infect Dis. 1993 Jan;167(1):230–233. doi: 10.1093/infdis/167.1.230. [DOI] [PubMed] [Google Scholar]
  11. Knirel Y. A., Paramonov N. A., Shashkov A. S., Kochetkov N. K., Yarullin R. G., Farber S. M., Efremenko V. I. Structure of the polysaccharide chains of Pseudomonas pseudomallei lipopolysaccharides. Carbohydr Res. 1992 Sep 2;233:185–193. doi: 10.1016/s0008-6215(00)90930-3. [DOI] [PubMed] [Google Scholar]
  12. Leelarasamee A., Bovornkitti S. Melioidosis: review and update. Rev Infect Dis. 1989 May-Jun;11(3):413–425. doi: 10.1093/clinids/11.3.413. [DOI] [PubMed] [Google Scholar]
  13. Perry M. B., MacLean L. L., Schollaardt T., Bryan L. E., Ho M. Structural characterization of the lipopolysaccharide O antigens of Burkholderia pseudomallei. Infect Immun. 1995 Sep;63(9):3348–3352. doi: 10.1128/iai.63.9.3348-3352.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pier G. B., Thomas D. M. Characterization of the human immune response to a polysaccharide vaccine from Pseudomonas aeruginosa. J Infect Dis. 1983 Aug;148(2):206–213. doi: 10.1093/infdis/148.2.206. [DOI] [PubMed] [Google Scholar]
  15. Pitt T. L., Aucken H., Dance D. A. Homogeneity of lipopolysaccharide antigens in Pseudomonas pseudomallei. J Infect. 1992 Sep;25(2):139–146. doi: 10.1016/0163-4453(92)93920-l. [DOI] [PubMed] [Google Scholar]
  16. Pruksachartvuthi S., Aswapokee N., Thankerngpol K. Survival of Pseudomonas pseudomallei in human phagocytes. J Med Microbiol. 1990 Feb;31(2):109–114. doi: 10.1099/00222615-31-2-109. [DOI] [PubMed] [Google Scholar]
  17. Suputtamongkol Y., Hall A. J., Dance D. A., Chaowagul W., Rajchanuvong A., Smith M. D., White N. J. The epidemiology of melioidosis in Ubon Ratchatani, northeast Thailand. Int J Epidemiol. 1994 Oct;23(5):1082–1090. doi: 10.1093/ije/23.5.1082. [DOI] [PubMed] [Google Scholar]
  18. Suputtamongkol Y., Rajchanuwong A., Chaowagul W., Dance D. A., Smith M. D., Wuthiekanun V., Walsh A. L., Pukrittayakamee S., White N. J. Ceftazidime vs. amoxicillin/clavulanate in the treatment of severe melioidosis. Clin Infect Dis. 1994 Nov;19(5):846–853. doi: 10.1093/clinids/19.5.846. [DOI] [PubMed] [Google Scholar]
  19. White N. J., Dance D. A., Chaowagul W., Wattanagoon Y., Wuthiekanun V., Pitakwatchara N. Halving of mortality of severe melioidosis by ceftazidime. Lancet. 1989 Sep 23;2(8665):697–701. doi: 10.1016/s0140-6736(89)90768-x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES