Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Sep;65(9):3774–3780. doi: 10.1128/iai.65.9.3774-3780.1997

Effect of cytolethal distending toxin on F-actin assembly and cell division in Chinese hamster ovary cells.

V Aragon 1, K Chao 1, L A Dreyfus 1
PMCID: PMC175538  PMID: 9284151

Abstract

Cytolethal distending toxin (CDT) is a newly described toxin produced by a number of enteropathogens, including Campylobacter jejuni, various Escherichia coli strains, and a few Shigella species. CDT induces distension and eventual death of a number of transformed cell lines. Here, we extend previous studies by demonstrating that morphological changes in CDT-treated Chinese hamster ovary cells are coincident with changes in cytoskeletal structure and an inhibition of cell proliferation. CDT-treated cells underwent a progressive accumulation of F-actin assemblies which microscopically resembled actin stress fibers. Accumulation of the stress fiber-like structures in CDT-treated cells was accompanied by an apparent blockage of cell division. Multinucleation was detected in some cells but did not constitute a significant feature of CDT action. Although toxin-treated cells failed to divide, cell viability remained high for the first 4 days following toxin treatment, as evidenced by trypan blue exclusion and neutral red uptake. [3H]thymidine incorporation studies on CDT-treated cells were consistent with a blockage of cell proliferation without a direct inhibition of DNA synthesis. Although the progression of toxin action developed slowly, a 2-min exposure to CDT resulted in an irreversible development of toxicity. Together, our data indicate that CDT affects F-actin assembly within target cells and may interrupt the regulation or function of cell cycle-dependent events leading to cytokinesis.

Full Text

The Full Text of this article is available as a PDF (546.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borenfreund E., Puerner J. A. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett. 1985 Feb-Mar;24(2-3):119–124. doi: 10.1016/0378-4274(85)90046-3. [DOI] [PubMed] [Google Scholar]
  2. Caprioli A., Falbo V., Roda L. G., Ruggeri F. M., Zona C. Partial purification and characterization of an escherichia coli toxic factor that induces morphological cell alterations. Infect Immun. 1983 Mar;39(3):1300–1306. doi: 10.1128/iai.39.3.1300-1306.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cope L. D., Lumbley S., Latimer J. L., Klesney-Tait J., Stevens M. K., Johnson L. S., Purven M., Munson R. S., Jr, Lagergard T., Radolf J. D. A diffusible cytotoxin of Haemophilus ducreyi. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4056–4061. doi: 10.1073/pnas.94.8.4056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Donelli G., Fiorentini C. Bacterial protein toxins acting on the cell cytoskeleton. New Microbiol. 1994 Oct;17(4):345–362. [PubMed] [Google Scholar]
  5. Fiorentini C., Chow S. C., Mastrantonio P., Jeddi-Tehrani M., Thelestam M. Clostridium difficile toxin A induces multinucleation in the human leukemic T cell line JURKAT. Eur J Cell Biol. 1992 Apr;57(2):292–297. [PubMed] [Google Scholar]
  6. Fiorentini C., Donelli G., Matarrese P., Fabbri A., Paradisi S., Boquet P. Escherichia coli cytotoxic necrotizing factor 1: evidence for induction of actin assembly by constitutive activation of the p21 Rho GTPase. Infect Immun. 1995 Oct;63(10):3936–3944. doi: 10.1128/iai.63.10.3936-3944.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gilbert D. M., Neilson A., Miyazawa H., DePamphilis M. L., Burhans W. C. Mimosine arrests DNA synthesis at replication forks by inhibiting deoxyribonucleotide metabolism. J Biol Chem. 1995 Apr 21;270(16):9597–9606. doi: 10.1074/jbc.270.16.9597. [DOI] [PubMed] [Google Scholar]
  8. Hall A. Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol. 1994;10:31–54. doi: 10.1146/annurev.cb.10.110194.000335. [DOI] [PubMed] [Google Scholar]
  9. Johnson W. M., Lior H. A new heat-labile cytolethal distending toxin (CLDT) produced by Campylobacter spp. Microb Pathog. 1988 Feb;4(2):115–126. doi: 10.1016/0882-4010(88)90053-8. [DOI] [PubMed] [Google Scholar]
  10. Johnson W. M., Lior H. A new heat-labile cytolethal distending toxin (CLDT) produced by Escherichia coli isolates from clinical material. Microb Pathog. 1988 Feb;4(2):103–113. doi: 10.1016/0882-4010(88)90052-6. [DOI] [PubMed] [Google Scholar]
  11. Kishi K., Sasaki T., Kuroda S., Itoh T., Takai Y. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol. 1993 Mar;120(5):1187–1195. doi: 10.1083/jcb.120.5.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nobes C. D., Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995 Apr 7;81(1):53–62. doi: 10.1016/0092-8674(95)90370-4. [DOI] [PubMed] [Google Scholar]
  13. O'Brien A. D., Holmes R. K. Shiga and Shiga-like toxins. Microbiol Rev. 1987 Jun;51(2):206–220. doi: 10.1128/mr.51.2.206-220.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Okuda J., Fukumoto M., Takeda Y., Nishibuchi M. Examination of diarrheagenicity of cytolethal distending toxin: suckling mouse response to the products of the cdtABC genes of Shigella dysenteriae. Infect Immun. 1997 Feb;65(2):428–433. doi: 10.1128/iai.65.2.428-433.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Okuda J., Kurazono H., Takeda Y. Distribution of the cytolethal distending toxin A gene (cdtA) among species of Shigella and Vibrio, and cloning and sequencing of the cdt gene from Shigella dysenteriae. Microb Pathog. 1995 Mar;18(3):167–172. doi: 10.1016/s0882-4010(95)90022-5. [DOI] [PubMed] [Google Scholar]
  16. Olson M. F., Ashworth A., Hall A. An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science. 1995 Sep 1;269(5228):1270–1272. doi: 10.1126/science.7652575. [DOI] [PubMed] [Google Scholar]
  17. Oswald E., Sugai M., Labigne A., Wu H. C., Fiorentini C., Boquet P., O'Brien A. D. Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3814–3818. doi: 10.1073/pnas.91.9.3814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pickett C. L., Cottle D. L., Pesci E. C., Bikah G. Cloning, sequencing, and expression of the Escherichia coli cytolethal distending toxin genes. Infect Immun. 1994 Mar;62(3):1046–1051. doi: 10.1128/iai.62.3.1046-1051.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pickett C. L., Pesci E. C., Cottle D. L., Russell G., Erdem A. N., Zeytin H. Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter sp. cdtB gene. Infect Immun. 1996 Jun;64(6):2070–2078. doi: 10.1128/iai.64.6.2070-2078.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Scott D. A., Kaper J. B. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. Infect Immun. 1994 Jan;62(1):244–251. doi: 10.1128/iai.62.1.244-251.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Smego R. A., Jr, Halsey N. A. The case for routine hepatitis B immunization in infancy for populations at increased risk. Pediatr Infect Dis J. 1987 Jan;6(1):11–19. doi: 10.1097/00006454-198701000-00005. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES