Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Sep;65(9):3806–3814. doi: 10.1128/iai.65.9.3806-3814.1997

The trypanocidal Cape buffalo serum protein is xanthine oxidase.

M Muranjan 1, Q Wang 1, Y L Li 1, E Hamilton 1, F P Otieno-Omondi 1, J Wang 1, A Van Praagh 1, J G Grootenhuis 1, S J Black 1
PMCID: PMC175543  PMID: 9284156

Abstract

Plasma and serum from Cape buffalo (Syncerus caffer) kill bloodstream stages of all species of African trypanosomes in vitro. The trypanocidal serum component was isolated by sequential chromatography on hydroxylapatite, protein A-G, Mono Q, and Superose 12. The purified trypanocidal protein had a molecular mass of 150 kDa, and activity correlated with the presence of a 146-kDa polypeptide detected upon reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Amino acid sequences of three peptide fragments of the 146-kDa reduced polypeptide, ligand affinity and immunoaffinity chromatography of the native protein, and sensitivity to pharmacological inhibitors, identified the trypanocidal material as xanthine oxidase (EC 1.1.3.22). Trypanocidal activity resulted in the inhibition of trypanosome glycolysis and was due to H2O2 produced during catabolism of extracellular xanthine and hypoxanthine by the purine catabolic enzyme.

Full Text

The Full Text of this article is available as a PDF (594.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi T., Fukushima T., Usami Y., Hirano K. Binding of human xanthine oxidase to sulphated glycosaminoglycans on the endothelial-cell surface. Biochem J. 1993 Jan 15;289(Pt 2):523–527. doi: 10.1042/bj2890523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amaya Y., Yamazaki K., Sato M., Noda K., Nishino T., Nishino T. Proteolytic conversion of xanthine dehydrogenase from the NAD-dependent type to the O2-dependent type. Amino acid sequence of rat liver xanthine dehydrogenase and identification of the cleavage sites of the enzyme protein during irreversible conversion by trypsin. J Biol Chem. 1990 Aug 25;265(24):14170–14175. [PubMed] [Google Scholar]
  3. Angermüller S., Bruder G., Völkl A., Wesch H., Fahimi H. D. Localization of xanthine oxidase in crystalline cores of peroxisomes. A cytochemical and biochemical study. Eur J Cell Biol. 1987 Dec;45(1):137–144. [PubMed] [Google Scholar]
  4. Baltz T., Baltz D., Giroud C., Crockett J. Cultivation in a semi-defined medium of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. rhodesiense and T. gambiense. EMBO J. 1985 May;4(5):1273–1277. doi: 10.1002/j.1460-2075.1985.tb03772.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Barnard J. P., Reynafarje B., Pedersen P. L. Glucose catabolism in African trypanosomes. Evidence that the terminal step is catalyzed by a pyruvate transporter capable of facilitating uptake of toxic analogs. J Biol Chem. 1993 Feb 15;268(5):3654–3661. [PubMed] [Google Scholar]
  6. Bienen E. J., Saric M., Pollakis G., Grady R. W., Clarkson A. B., Jr Mitochondrial development in Trypanosoma brucei brucei transitional bloodstream forms. Mol Biochem Parasitol. 1991 Apr;45(2):185–192. doi: 10.1016/0166-6851(91)90085-k. [DOI] [PubMed] [Google Scholar]
  7. Black S., Vandeweerd V. Serum lipoproteins are required for multiplication of Trypanosoma brucei brucei under axenic culture conditions. Mol Biochem Parasitol. 1989 Nov;37(1):65–72. doi: 10.1016/0166-6851(89)90103-5. [DOI] [PubMed] [Google Scholar]
  8. Cruz F. S., Berens R. L., Marr J. J. Xanthine oxidase in calf serum: formation of oxygen metabolites that are toxic for Trypanosoma cruzi in culture. J Parasitol. 1983 Feb;69(1):237–239. [PubMed] [Google Scholar]
  9. Dwinger R. H., Grootenhuis J. G., Murray M., Moloo S. K., Gettinby G. Susceptibility of buffaloes, cattle and goats to infection with different stocks of Trypanosoma vivax transmitted by Glossina morsitans centralis. Res Vet Sci. 1986 Nov;41(3):307–315. [PubMed] [Google Scholar]
  10. FULTON J. D., SPOONER D. F. Inhibition of the respiration of Trypanosoma rhodesiense by thiols. Biochem J. 1956 Jul;63(3):475–481. doi: 10.1042/bj0630475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ferrante A., Allison A. C., Hirumi H. Polyamine oxidase-mediated killing of African trypanosomes. Parasite Immunol. 1982 Sep;4(5):349–354. doi: 10.1111/j.1365-3024.1982.tb00446.x. [DOI] [PubMed] [Google Scholar]
  12. Fish W. R., Looker D. L., Marr J. J., Berens R. L. Purine metabolism in the bloodstream forms of Trypanosoma gambiense and Trypanosoma rhodesiense. Biochim Biophys Acta. 1982 Nov 24;719(2):223–231. doi: 10.1016/0304-4165(82)90092-7. [DOI] [PubMed] [Google Scholar]
  13. Grootenhuis J. G., Dwinger R. H., Dolan R. B., Moloo S. K., Murray M. Susceptibility of African buffalo and Boran cattle to Trypanosoma congolense transmitted by Glossina morsitans centralis. Vet Parasitol. 1990 Mar;35(3):219–231. doi: 10.1016/0304-4017(90)90057-i. [DOI] [PubMed] [Google Scholar]
  14. Hajduk S. L., Moore D. R., Vasudevacharya J., Siqueira H., Torri A. F., Tytler E. M., Esko J. D. Lysis of Trypanosoma brucei by a toxic subspecies of human high density lipoprotein. J Biol Chem. 1989 Mar 25;264(9):5210–5217. [PubMed] [Google Scholar]
  15. Hassan H. F., Coombs G. H. Purine and pyrimidine metabolism in parasitic protozoa. FEMS Microbiol Rev. 1988 Feb;4(1):47–83. doi: 10.1111/j.1574-6968.1988.tb02708.x-i1. [DOI] [PubMed] [Google Scholar]
  16. Hassoun P. M., Yu F. S., Shedd A. L., Zulueta J. J., Thannickal V. J., Lanzillo J. J., Fanburg B. L. Regulation of endothelial cell xanthine dehydrogenase xanthine oxidase gene expression by oxygen tension. Am J Physiol. 1994 Feb;266(2 Pt 1):L163–L171. doi: 10.1152/ajplung.1994.266.2.L163. [DOI] [PubMed] [Google Scholar]
  17. Hellsten-Westing Y. Immunohistochemical localization of xanthine oxidase in human cardiac and skeletal muscle. Histochemistry. 1993 Sep;100(3):215–222. doi: 10.1007/BF00269094. [DOI] [PubMed] [Google Scholar]
  18. Hille R., Nishino T. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J. 1995 Aug;9(11):995–1003. [PubMed] [Google Scholar]
  19. Hughes R. K. Xanthine dehydrogenase from Drosophila melanogaster: purification and properties of the wild-type enzyme and of a variant lacking iron-sulfur centers. Biochemistry. 1992 Mar 31;31(12):3073–3083. doi: 10.1021/bi00127a007. [DOI] [PubMed] [Google Scholar]
  20. Ichikawa M., Nishino T., Nishino T., Ichikawa A. Subcellular localization of xanthine oxidase in rat hepatocytes: high-resolution immunoelectron microscopic study combined with biochemical analysis. J Histochem Cytochem. 1992 Aug;40(8):1097–1103. doi: 10.1177/40.8.1619276. [DOI] [PubMed] [Google Scholar]
  21. Kooij A., Bosch K. S., Frederiks W. M., Van Noorden C. J. High levels of xanthine oxidoreductase in rat endothelial, epithelial and connective tissue cells. A relation between localization and function? Virchows Arch B Cell Pathol Incl Mol Pathol. 1992;62(3):143–150. doi: 10.1007/BF02899676. [DOI] [PubMed] [Google Scholar]
  22. Kvam B. J., Fragonas E., Degrassi A., Kvam C., Matulova M., Pollesello P., Zanetti F., Vittur F. Oxygen-derived free radical (ODFR) action on hyaluronan (HA), on two HA ester derivatives, and on the metabolism of articular chondrocytes. Exp Cell Res. 1995 May;218(1):79–86. doi: 10.1006/excr.1995.1133. [DOI] [PubMed] [Google Scholar]
  23. Massey V., Komai H., Palmer G., Elion G. B. On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J Biol Chem. 1970 Jun 10;245(11):2837–2844. [PubMed] [Google Scholar]
  24. McKelvey T. G., Höllwarth M. E., Granger D. N., Engerson T. D., Landler U., Jones H. P. Mechanisms of conversion of xanthine dehydrogenase to xanthine oxidase in ischemic rat liver and kidney. Am J Physiol. 1988 May;254(5 Pt 1):G753–G760. doi: 10.1152/ajpgi.1988.254.5.G753. [DOI] [PubMed] [Google Scholar]
  25. Morgan G. A., Hamilton E. A., Black S. J. The requirements for G1 checkpoint progression of Trypanosoma brucei S 427 clone 1. Mol Biochem Parasitol. 1996 Jun;78(1-2):195–207. doi: 10.1016/s0166-6851(96)02625-4. [DOI] [PubMed] [Google Scholar]
  26. Moriwaki Y., Yamamoto T., Suda M., Nasako Y., Takahashi S., Agbedana O. E., Hada T., Higashino K. Purification and immunohistochemical tissue localization of human xanthine oxidase. Biochim Biophys Acta. 1993 Aug 7;1164(3):327–330. doi: 10.1016/0167-4838(93)90266-t. [DOI] [PubMed] [Google Scholar]
  27. Nagler L. G., Vartanyan L. S. Subunit structure of bovine milk xanthine oxidase. Effect of limited cleavage by proteolytic enzymes on activity and structure. Biochim Biophys Acta. 1976 Mar 18;427(1):78–90. doi: 10.1016/0005-2795(76)90287-7. [DOI] [PubMed] [Google Scholar]
  28. Nishino T., Nishino T., Tsushima K. Purification of highly active milk xanthine oxidase by affinity chromatography on Sepharose 4B/folate gel. FEBS Lett. 1981 Aug 31;131(2):369–372. doi: 10.1016/0014-5793(81)80406-1. [DOI] [PubMed] [Google Scholar]
  29. Nishino T., Tsushima K. Interaction of milk xanthine oxidase with folic acid. Inhibition of milk xanthine oxidase by folic acid and separation of the enzyme into two fractions on Sepharose 4B/folate gel. J Biol Chem. 1986 Aug 25;261(24):11242–11246. [PubMed] [Google Scholar]
  30. Olubayo R. O., Grootenhuis J. G., Rurangirwa F. R. Susceptibility of African buffalo and Boran cattle to intravenous inoculation with Trypanosoma congolense bloodstream forms. Trop Med Parasitol. 1990 Jun;41(2):181–184. [PubMed] [Google Scholar]
  31. Pfeffer K. D., Huecksteadt T. P., Hoidal J. R. Xanthine dehydrogenase and xanthine oxidase activity and gene expression in renal epithelial cells. Cytokine and steroid regulation. J Immunol. 1994 Aug 15;153(4):1789–1797. [PubMed] [Google Scholar]
  32. Phan S. H., Gannon D. E., Ward P. A., Karmiol S. Mechanism of neutrophil-induced xanthine dehydrogenase to xanthine oxidase conversion in endothelial cells: evidence of a role for elastase. Am J Respir Cell Mol Biol. 1992 Mar;6(3):270–278. doi: 10.1165/ajrcmb/6.3.270. [DOI] [PubMed] [Google Scholar]
  33. Poss W. B., Huecksteadt T. P., Panus P. C., Freeman B. A., Hoidal J. R. Regulation of xanthine dehydrogenase and xanthine oxidase activity by hypoxia. Am J Physiol. 1996 Jun;270(6 Pt 1):L941–L946. doi: 10.1152/ajplung.1996.270.6.L941. [DOI] [PubMed] [Google Scholar]
  34. Reduth D., Grootenhuis J. G., Olubayo R. O., Muranjan M., Otieno-Omondi F. P., Morgan G. A., Brun R., Williams D. J., Black S. J. African buffalo serum contains novel trypanocidal protein. J Eukaryot Microbiol. 1994 Mar-Apr;41(2):95–103. doi: 10.1111/j.1550-7408.1994.tb01480.x. [DOI] [PubMed] [Google Scholar]
  35. Samra Z. Q., Oguro T., Fontaine R., Ashraf M. Immunocytochemical localization of xanthine oxidase in rat myocardium. J Submicrosc Cytol Pathol. 1991 Jul;23(3):379–390. [PubMed] [Google Scholar]
  36. Terao M., Cazzaniga G., Ghezzi P., Bianchi M., Falciani F., Perani P., Garattini E. Molecular cloning of a cDNA coding for mouse liver xanthine dehydrogenase. Regulation of its transcript by interferons in vivo. Biochem J. 1992 May 1;283(Pt 3):863–870. doi: 10.1042/bj2830863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Tomlinson S., Muranjan M., Nussenzweig V., Raper J. Haptoglobin-related protein and apolipoprotein AI are components of the two trypanolytic factors in human serum. Mol Biochem Parasitol. 1997 May;86(1):117–120. [PubMed] [Google Scholar]
  38. Wakabayashi Y., Fujita H., Morita I., Kawaguchi H., Murota S. Conversion of xanthine dehydrogenase to xanthine oxidase in bovine carotid artery endothelial cells induced by activated neutrophils: involvement of adhesion molecules. Biochim Biophys Acta. 1995 Mar 16;1265(2-3):103–109. doi: 10.1016/0167-4889(94)00202-p. [DOI] [PubMed] [Google Scholar]
  39. Waud W. R., Rajagopalan K. V. Purification and properties of the NAD+-dependent (type D) and O2-dependent (type O) forms of rat liver xanthine dehydrogenase. Arch Biochem Biophys. 1976 Feb;172(2):354–364. doi: 10.1016/0003-9861(76)90087-4. [DOI] [PubMed] [Google Scholar]
  40. Webster P., Russo D. C., Black S. J. The interaction of Trypanosoma brucei with antibodies to variant surface glycoproteins. J Cell Sci. 1990 Jun;96(Pt 2):249–255. doi: 10.1242/jcs.96.2.249. [DOI] [PubMed] [Google Scholar]
  41. Zimmerman B. J., Grisham M. B., Granger D. N. Mechanisms of oxidant-mediated microvascular injury following reperfusion of the ischemic intestine. Basic Life Sci. 1988;49:881–886. doi: 10.1007/978-1-4684-5568-7_143. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES