Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Sep;65(9):3822–3827. doi: 10.1128/iai.65.9.3822-3827.1997

Mannan-specific immunoglobulin G antibodies in normal human serum mediate classical pathway initiation of C3 binding to Candida albicans.

M X Zhang 1, D M Lupan 1, T R Kozel 1
PMCID: PMC175545  PMID: 9284158

Abstract

Candida albicans activates both the classical and alternative complement pathways. Previous studies found that immunoglobulin G (IgG) in normal human serum (NHS) mediates classical pathway initiation. The goal of this study was to determine the role of candidal mannan-specific human IgG antibodies in complement activation. Mannan was purified from the yeast cells, and naturally occurring antimannan IgG was isolated from pooled NHS or plasma samples by immunoaffinity chromatography. Early activation and binding of C3, characteristics of classical pathway activity, were abolished in yeast- or mannan-absorbed serum but could be restored to absorbed serum with added purified antimannan IgG in a dose-dependent manner. Microscopically, the immunofluorescence pattern of initial C3 binding was diffuse over the entire cell surface for yeast cells incubated in NHS or in mannan-absorbed NHS supplemented with antimannan IgG but was asynchronous and focal for yeast cells incubated in EGTA-treated or mannan-absorbed NHS. The antimannan IgG level in serum samples from 21 donors varied from 17 to 570 microg/ml of serum compared to 220 microg in pooled NHS samples. The rate of initial C3 binding to yeast cells correlated with the level of antimannan IgG in sera from different individuals (r2 = 0.94) and could be accelerated in sera containing lower amounts of antimannan IgG with exogenous antimannan IgG. These observations identify antimannan IgG as the initiator of classical pathway C3 deposition on C. albicans. Given the variability in the levels of antimannan antibodies in sera from different individuals, the presence or absence of these antibodies may be an important determinant of host resistance to disseminated candidiasis.

Full Text

The Full Text of this article is available as a PDF (332.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  2. Gelfand J. A., Hurley D. L., Fauci A. S., Frank M. M. Role of complement in host defense against experimental disseminated candidiasis. J Infect Dis. 1978 Jul;138(1):9–16. doi: 10.1093/infdis/138.1.9. [DOI] [PubMed] [Google Scholar]
  3. Han Y., Cutler J. E. Antibody response that protects against disseminated candidiasis. Infect Immun. 1995 Jul;63(7):2714–2719. doi: 10.1128/iai.63.7.2714-2719.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Horstmann R. D., Sievertsen H. J., Knobloch J., Fischetti V. A. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1657–1661. doi: 10.1073/pnas.85.5.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kanbe T., Jutila M. A., Cutler J. E. Evidence that Candida albicans binds via a unique adhesion system on phagocytic cells in the marginal zone of the mouse spleen. Infect Immun. 1992 May;60(5):1972–1978. doi: 10.1128/iai.60.5.1972-1978.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kazatchkine M. D., Fearon D. T., Austen K. F. Human alternative complement pathway: membrane-associated sialic acid regulates the competition between B and beta1 H for cell-bound C3b. J Immunol. 1979 Jan;122(1):75–81. [PubMed] [Google Scholar]
  7. Kobayashi H., Shibata N., Mitobe H., Ohkubo Y., Suzuki S. Structural study of phosphomannan of yeast-form cells of Candida albicans J-1012 strain with special reference to application of mild acetolysis. Arch Biochem Biophys. 1989 Aug 1;272(2):364–375. doi: 10.1016/0003-9861(89)90230-0. [DOI] [PubMed] [Google Scholar]
  8. Kocourek J., Ballou C. E. Method for fingerprinting yeast cell wall mannans. J Bacteriol. 1969 Dec;100(3):1175–1181. doi: 10.1128/jb.100.3.1175-1181.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kozel T. R., Brown R. R., Pfrommer G. S. Activation and binding of C3 by Candida albicans. Infect Immun. 1987 Aug;55(8):1890–1894. doi: 10.1128/iai.55.8.1890-1894.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kozel T. R., Pfrommer G. S. Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. Infect Immun. 1986 Apr;52(1):1–5. doi: 10.1128/iai.52.1.1-5.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kozel T. R., Weinhold L. C., Lupan D. M. Distinct characteristics of initiation of the classical and alternative complement pathways by Candida albicans. Infect Immun. 1996 Aug;64(8):3360–3368. doi: 10.1128/iai.64.8.3360-3368.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lehmann P. F., Reiss E. Comparison by ELISA of serum anti-Candida albicans mannan IgG levels of a normal population and in diseased patients. Mycopathologia. 1980 Mar 17;70(2):89–93. doi: 10.1007/BF00443073. [DOI] [PubMed] [Google Scholar]
  13. Lyon F. L., Hector R. F., Domer J. E. Innate and acquired immune responses against Candida albicans in congenic B10.D2 mice with deficiency of the C5 complement component. J Med Vet Mycol. 1986 Oct;24(5):359–367. doi: 10.1080/02681218680000551. [DOI] [PubMed] [Google Scholar]
  14. Morelli R., Rosenberg L. T. Role of complement during experimental Candida infection in mice. Infect Immun. 1971 Apr;3(4):521–523. doi: 10.1128/iai.3.4.521-523.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nelson R. D., Shibata N., Podzorski R. P., Herron M. J. Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action. Clin Microbiol Rev. 1991 Jan;4(1):1–19. doi: 10.1128/cmr.4.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pfrommer G. S., Dickens S. M., Wilson M. A., Young B. J., Kozel T. R. Accelerated decay of C3b to iC3b when C3b is bound to the Cryptococcus neoformans capsule. Infect Immun. 1993 Oct;61(10):4360–4366. doi: 10.1128/iai.61.10.4360-4366.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schenkein H. A., Ruddy S. The role of immunoglobulins in alternative pathway activation by zymosan. II. The effect of IgG on the kinetics of the alternative pathway. J Immunol. 1981 Jan;126(1):11–15. [PubMed] [Google Scholar]
  18. Tsang V. C., Wilkins P. P. Optimum dissociating condition for immunoaffinity and preferential isolation of antibodies with high specific activity. J Immunol Methods. 1991 Apr 25;138(2):291–299. doi: 10.1016/0022-1759(91)90178-i. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES