Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2004 Dec 15;64(7):1033–1037. doi: 10.1136/ard.2004.029082

Tibial plateau size is related to grade of joint space narrowing and osteophytes in healthy women and in women with osteoarthritis

A Wluka 1, Y Wang 1, S Davis 1, F Cicuttini 1
PMCID: PMC1755552  PMID: 15601742

Abstract

Objective: To determine the relation of bone size to radiographic severity in knee osteoarthritis.

Methods: 149 women (81 healthy and 68 with knee osteoarthritis) underwent knee radiography and magnetic resonance imaging on their symptomatic or dominant knee. Tibial plateau bone area was measured at baseline and at follow up.

Results: Women with osteoarthritis had larger medial and lateral tibial plateau bone area (mean (SD): 1850 (240) mm2 and 1279 (220) mm2, respectively) than healthy women (1670 (200) mm2 and 1050 (130) mm2) (p<0.001 for both differences). For each increase in grade of osteophyte, an increase in bone area was seen of 146 mm2 in the medial compartment and 102 mm2 in the lateral compartment. Similarly, for each increase in grade of joint space narrowing, tibial plateau bone area increased by 160 mm2 in the medial compartment and 131 mm2 in the lateral compartment (significance of regression coefficients all p<0.001). These relations persisted after adjusting for potential confounders, with the exception of the association between grade of medial osteophytes and medial plateau area.

Conclusions: With increasing severity of radiographic knee osteoarthritis, tibial plateau size increases. Whether this bone increase plays a role in the pathogenesis of osteoarthritis remains to be determined.

Full Text

The Full Text of this article is available as a PDF (109.6 KB).

Figure 1.

Figure 1

 Axial T1 weighted fat saturated three dimensional magnetic resonance image showing the method of measuring the tibial plateau bone area. The area of medial (Roi-2) and lateral (Roi-1) tibial plateau bone is measured manually on the image on the left, which shows both tibial cartilage and subchondral bone and the next image distal to the joint, shown on the right. An average of the two areas is used as an estimate of the tibial plateau bone area.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman R. D., Hochberg M., Murphy W. A., Jr, Wolfe F., Lequesne M. Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage. 1995 Sep;3 (Suppl A):3–70. [PubMed] [Google Scholar]
  2. Altman R., Asch E., Bloch D., Bole G., Borenstein D., Brandt K., Christy W., Cooke T. D., Greenwald R., Hochberg M. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986 Aug;29(8):1039–1049. doi: 10.1002/art.1780290816. [DOI] [PubMed] [Google Scholar]
  3. Arokoski J. P. A., Arokoski M. H., Jurvelin J. S., Helminen H. J., Niemitukia L. H., Kröger H. Increased bone mineral content and bone size in the femoral neck of men with hip osteoarthritis. Ann Rheum Dis. 2002 Feb;61(2):145–150. doi: 10.1136/ard.61.2.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bellamy N., Buchanan W. W., Goldsmith C. H., Campbell J., Stitt L. W. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988 Dec;15(12):1833–1840. [PubMed] [Google Scholar]
  5. Cicuttini F. M., Wluka A. E., Forbes A., Wolfe R. Comparison of tibial cartilage volume and radiologic grade of the tibiofemoral joint. Arthritis Rheum. 2003 Mar;48(3):682–688. doi: 10.1002/art.10840. [DOI] [PubMed] [Google Scholar]
  6. Cicuttini F., Forbes A., Morris K., Darling S., Bailey M., Stuckey S. Gender differences in knee cartilage volume as measured by magnetic resonance imaging. Osteoarthritis Cartilage. 1999 May;7(3):265–271. doi: 10.1053/joca.1998.0200. [DOI] [PubMed] [Google Scholar]
  7. Dequeker J., Mohan S., Finkelman R. D., Aerssens J., Baylink D. J. Generalized osteoarthritis associated with increased insulin-like growth factor types I and II and transforming growth factor beta in cortical bone from the iliac crest. Possible mechanism of increased bone density and protection against osteoporosis. Arthritis Rheum. 1993 Dec;36(12):1702–1708. doi: 10.1002/art.1780361209. [DOI] [PubMed] [Google Scholar]
  8. Dieppe P. Subchondral bone should be the main target for the treatment of pain and disease progression in osteoarthritis. Osteoarthritis Cartilage. 1999 May;7(3):325–326. doi: 10.1053/joca.1998.0182. [DOI] [PubMed] [Google Scholar]
  9. Gevers G., Dequeker J. Collagen and non-collagenous protein content (osteocalcin, sialoprotein, proteoglycan) in the iliac crest bone and serum osteocalcin in women with and without hand osteoarthritis. Coll Relat Res. 1987 Dec;7(6):435–442. doi: 10.1016/s0174-173x(87)80041-9. [DOI] [PubMed] [Google Scholar]
  10. Haapasalo H., Kontulainen S., Sievänen H., Kannus P., Järvinen M., Vuori I. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone. 2000 Sep;27(3):351–357. doi: 10.1016/s8756-3282(00)00331-8. [DOI] [PubMed] [Google Scholar]
  11. Hochberg M. C., Lethbridge-Cejku M., Scott W. W., Jr, Reichle R., Plato C. C., Tobin J. D. Upper extremity bone mass and osteoarthritis of the knees: data from the Baltimore Longitudinal Study of Aging. J Bone Miner Res. 1995 Mar;10(3):432–438. doi: 10.1002/jbmr.5650100314. [DOI] [PubMed] [Google Scholar]
  12. Jones G., Ding Changhai, Scott F., Glisson M., Cicuttini F. Early radiographic osteoarthritis is associated with substantial changes in cartilage volume and tibial bone surface area in both males and females. Osteoarthritis Cartilage. 2004 Feb;12(2):169–174. doi: 10.1016/j.joca.2003.08.010. [DOI] [PubMed] [Google Scholar]
  13. Moore R. J., Fazzalari N. L., Manthey B. A., Vernon-Roberts B. The relationship between head-neck-shaft angle, calcar width, articular cartilage thickness and bone volume in arthrosis of the hip. Br J Rheumatol. 1994 May;33(5):432–436. doi: 10.1093/rheumatology/33.5.432. [DOI] [PubMed] [Google Scholar]
  14. SMITH R. W., Jr, WALKER R. R. FEMORAL EXPANSION IN AGING WOMEN: IMPLICATIONS FOR OSTEOPOROSIS AND FRACTURES. Science. 1964 Jul 10;145(3628):156–157. doi: 10.1126/science.145.3628.156. [DOI] [PubMed] [Google Scholar]
  15. Spector T. D., Harris P. A., Hart D. J., Cicuttini F. M., Nandra D., Etherington J., Wolman R. L., Doyle D. V. Risk of osteoarthritis associated with long-term weight-bearing sports: a radiologic survey of the hips and knees in female ex-athletes and population controls. Arthritis Rheum. 1996 Jun;39(6):988–995. doi: 10.1002/art.1780390616. [DOI] [PubMed] [Google Scholar]
  16. Wluka A. E., Davis S. R., Bailey M., Stuckey S. L., Cicuttini F. M. Users of oestrogen replacement therapy have more knee cartilage than non-users. Ann Rheum Dis. 2001 Apr;60(4):332–336. doi: 10.1136/ard.60.4.332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wluka Anita E., Stuckey Stephen, Snaddon Judith, Cicuttini Flavia M. The determinants of change in tibial cartilage volume in osteoarthritic knees. Arthritis Rheum. 2002 Aug;46(8):2065–2072. doi: 10.1002/art.10460. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES