Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2005 Jan 7;64(7):981–987. doi: 10.1136/ard.2004.029710

A longitudinal study on an autoimmune murine model of ankylosing spondylitis

T Bardos 1, Z Szabo 1, M Czipri 1, C Vermes 1, M Tunyogi-Csapo 1, R Urban 1, K Mikecz 1, T Glant 1
PMCID: PMC1755557  PMID: 15640265

Abstract

Background: Proteoglycan aggrecan (PG)-induced arthritis (PGIA) is the only systemic autoimmune murine model which affects the axial skeleton, but no studies have been performed characterising the progression of spine involvement.

Objectives: To follow pathological events in experimental spondylitis, and underline its clinical, radiographic, and histological similarities to human ankylosing spondylitis (AS); and to determine whether the spondyloarthropathy is a shared phenomenon with PGIA, or an "independent" disease.

Methods: Arthritis/spondylitis susceptible BALB/c and resistant DBA/2 mice, and their F1 and F2 hybrids were immunised with cartilage PG, and radiographic and histological studies were performed before onset and weekly during the progression of spondylitis.

Results: About 70% of the PG immunised BALB/c mice develop spondyloarthropathy (proteoglycan-induced spondylitis (PGISp), and the progression of the disease is very similar to human AS. It begins with inflammation in the sacroiliac joints and with enthesitis, and then progresses upwards, affecting multiple intervertebral disks. In F2 hybrids of arthritis/spondylitis susceptible BALB/c and resistant DBA/2 mice the incidence of arthritis was 43.5%, whereas the incidence of spondylitis was >60%. Some arthritic F2 hybrid mice had no spondylitis, whereas others developed spondylitis in the absence of peripheral arthritis.

Conclusions: The PGISp model provides a valuable tool for studying autoimmune reactions in spondylitis, and identifying genetic loci associated with spondyloarthropathy.

Full Text

The Full Text of this article is available as a PDF (323.0 KB).

Figure 1.

Figure 1

 Time course of immunisation, number of animals killed and analysed weekly, and the time of onset of arthritis in peripheral joints (PGIA; thick black arrow) and spondylitis (PGISp; thick white arrow). A total of 210 female BALB/c mice were immunised with human cartilage PG in the first experimental group, and five killed weekly.

Figure 2.

Figure 2

 Inflammation of the sacroiliac joints and progression of ankylosis in PG immunised BALB/c mice with spondylitis. The normal sacroiliac joint (A), which is first eroded by a synovial pannus-like hyperproliferative tissue (black arrows) at the articular surfaces indicated with dotted lines in (B), as early as 4–6 weeks after the onset of arthritis in the peripheral joints. This was followed shortly by massive proliferation of chondrocyte-like cells (white arrowheads in (C), which formed a junction of chondrophytes, resulting in complete ankylosis of the sacroiliac joint (D). The tissue sections were stained with haematoxylin and eosin.

Figure 3.

Figure 3

 Cervical spine segments in (A, B, C) normal mice and in (D, E, F) mice afflicted with spondylitis. The affected disks are shown with the ankylosing osteophytes (black arrows: IVD C4/C5), which protrude and compress the spinal cord (SpC) (D). Massive enthesitis develops with a pannus-like tissue eroding the rest of the IVD at the ventral side of the spine. Safranin O/fast green staining (B, E) demonstrates the PG content (red) in the growth plate (GP), in the cartilaginous end plate (EP), and, less intensively, in the annulus fibrosus (AF) and nucleus pulposus (NP) of the normal (B) or spondylitic (E) spine. In the affected spine (E) the annulus fibrosus and the nucleus pulposus have been completely resorbed and the end plate (black arrowheads) is essentially absent (E). The neighbouring vertebral bodies are connected by chondrophytes (black arrows), which ankylose the spine. Polarisation microscopy of sections stained with picrosirius red (panels C and F) indicates that the regularity of collagen fibres, due to parallel orientation in the normal annulus fibrosus (C; white arrows), is completely lost in the annulus fibrosus of the disk affected by inflammation (F).

Figure 4.

Figure 4

 Progression of spondylitis in the lumbar spine (L3-5) in PG immunised BALB/c mice. Alizarin red stains bone red, while alcian blue stains the cartilaginous structures blue. Black arrowheads indicate the cartilaginous growth plates of the vertebral bodies (A; control), which became moderately deformed by 12 weeks (B) and grossly altered by 24 weeks (C) after the onset of peripheral joint inflammation. White arrows show chondrophyte formation at the marginal regions of the vertebral bodies.

Figure 5.

Figure 5

 (A) Analysis and comparison of PG-induced arthritis (PGIA: A) and PG-induced spondylitis (PGISp: Sp) in 81 BALB/c (B/c), 48 DBA/2 (D/2) mice and their F1 and F2 hybrids (BALB/c x DBA/2) immunised with human cartilage PG. All mice were injected four times with PG and killed on week 30 of the experiment—that is, 21 weeks after the last immunisation. (B) Significant differences when male mice and female mice with arthritis or spondylitis, or both, were compared: *p<0.05; **p<0.01.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braun J., Bollow M., Sieper J. Radiologic diagnosis and pathology of the spondyloarthropathies. Rheum Dis Clin North Am. 1998 Nov;24(4):697–735. doi: 10.1016/s0889-857x(05)70038-7. [DOI] [PubMed] [Google Scholar]
  2. Brown M. A., Pile K. D., Kennedy L. G., Campbell D., Andrew L., March R., Shatford J. L., Weeks D. E., Calin A., Wordsworth B. P. A genome-wide screen for susceptibility loci in ankylosing spondylitis. Arthritis Rheum. 1998 Apr;41(4):588–595. doi: 10.1002/1529-0131(199804)41:4<588::AID-ART5>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  3. Brown Matthew A., Brophy Sinead, Bradbury Linda, Hamersma Jasmin, Timms Andrew, Laval Steven, Cardon Lon, Calin Andrei, Wordsworth B. Paul. Identification of major loci controlling clinical manifestations of ankylosing spondylitis. Arthritis Rheum. 2003 Aug;48(8):2234–2239. doi: 10.1002/art.11106. [DOI] [PubMed] [Google Scholar]
  4. Bárdos T., Kamath R. V., Mikecz K., Glant T. T. Anti-inflammatory and chondroprotective effect of TSG-6 (tumor necrosis factor-alpha-stimulated gene-6) in murine models of experimental arthritis. Am J Pathol. 2001 Nov;159(5):1711–1721. doi: 10.1016/s0002-9440(10)63018-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bárdos Tamás, Mikecz Katalin, Finnegan Alison, Zhang Jian, Glant Tibor T. T and B cell recovery in arthritis adoptively transferred to SCID mice: antigen-specific activation is required for restoration of autopathogenic CD4+ Th1 cells in a syngeneic system. J Immunol. 2002 Jun 15;168(12):6013–6021. doi: 10.4049/jimmunol.168.12.6013. [DOI] [PubMed] [Google Scholar]
  6. Cancino-Díaz M., Curiel-Quesada E., García-Latorre E., Jiménez-Zamudio L. Cloning and sequencing of the gene that codes for the Klebsiella pneumoniae GroEL-like protein associated with ankylosing spondylitis. Microb Pathog. 1998 Jul;25(1):23–32. doi: 10.1006/mpat.1998.0210. [DOI] [PubMed] [Google Scholar]
  7. Czipri Mátyás, Otto Jeffrey M., Cs-Szabó Gabriella, Kamath Rajesh V., Vermes Csaba, Firneisz Gábor, Kolman Kevin J., Watanabe Hideto, Li Yefu, Roughley Peter J. Genetic rescue of chondrodysplasia and the perinatal lethal effect of cartilage link protein deficiency. J Biol Chem. 2003 May 5;278(40):39214–39223. doi: 10.1074/jbc.M303329200. [DOI] [PubMed] [Google Scholar]
  8. Doege K. J., Sasaki M., Kimura T., Yamada Y. Complete coding sequence and deduced primary structure of the human cartilage large aggregating proteoglycan, aggrecan. Human-specific repeats, and additional alternatively spliced forms. J Biol Chem. 1991 Jan 15;266(2):894–902. [PubMed] [Google Scholar]
  9. Ebringer A., Wilson C. HLA molecules, bacteria and autoimmunity. J Med Microbiol. 2000 Apr;49(4):305–311. doi: 10.1099/0022-1317-49-4-305. [DOI] [PubMed] [Google Scholar]
  10. Ebringer R. W., Cawdell D. R., Cowling P., Ebringer A. Sequential studies in ankylosing spondylitis. Association of Klebsiella pneumoniae with active disease. Ann Rheum Dis. 1978 Apr;37(2):146–151. doi: 10.1136/ard.37.2.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fry T. R., Eurell J. C., Johnson A. L., Brown M. D., Losonsky J. M., Schaeffer D. J. Radiographic and histologic effects of chondroitinase ABC on normal canine lumbar intervertebral disc. Spine (Phila Pa 1976) 1991 Jul;16(7):816–819. doi: 10.1097/00007632-199107000-00022. [DOI] [PubMed] [Google Scholar]
  12. Glant T. T., Bárdos T., Vermes C., Chandrasekaran R., Valdéz J. C., Otto J. M., Gerard D., Velins S., Lovász G., Zhang J. Variations in susceptibility to proteoglycan-induced arthritis and spondylitis among C3H substrains of mice: evidence of genetically acquired resistance to autoimmune disease. Arthritis Rheum. 2001 Mar;44(3):682–692. doi: 10.1002/1529-0131(200103)44:3<682::AID-ANR118>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  13. Glant T. T., Cs-Szabó G., Nagase H., Jacobs J. J., Mikecz K. Progressive polyarthritis induced in BALB/c mice by aggrecan from normal and osteoarthritic human cartilage. Arthritis Rheum. 1998 Jun;41(6):1007–1018. doi: 10.1002/1529-0131(199806)41:6<1007::AID-ART7>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  14. Glant T. T., Mikecz K., Arzoumanian A., Poole A. R. Proteoglycan-induced arthritis in BALB/c mice. Clinical features and histopathology. Arthritis Rheum. 1987 Feb;30(2):201–212. doi: 10.1002/art.1780300211. [DOI] [PubMed] [Google Scholar]
  15. Glant T., Csongor J., Szücs T. Immunopathologic role of proteoglycan antigens in rheumatoid joint disease. Scand J Immunol. 1980;11(3):247–252. doi: 10.1111/j.1365-3083.1980.tb00232.x. [DOI] [PubMed] [Google Scholar]
  16. Glant Tibor T., Finnegan Alison, Mikecz Katalin. Proteoglycan-induced arthritis: immune regulation, cellular mechanisms, and genetics. Crit Rev Immunol. 2003;23(3):199–250. doi: 10.1615/critrevimmunol.v23.i3.20. [DOI] [PubMed] [Google Scholar]
  17. Glant Tibor T., Mikecz Katalin. Proteoglycan aggrecan-induced arthritis: a murine autoimmune model of rheumatoid arthritis. Methods Mol Med. 2004;102:313–338. doi: 10.1385/1-59259-805-6:313. [DOI] [PubMed] [Google Scholar]
  18. Golds E. E., Stephen I. B., Esdaile J. M., Strawczynski H., Poole A. R. Lymphocyte transformation to connective tissue antigens in adult and juvenile rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, systemic lupus erythematosus, and a nonarthritic control population. Cell Immunol. 1983 Nov;82(1):196–209. doi: 10.1016/0008-8749(83)90153-3. [DOI] [PubMed] [Google Scholar]
  19. Gonzalez-Roces S., Alvarez M. V., Gonzalez S., Dieye A., Makni H., Woodfield D. G., Housan L., Konenkov V., Abbadi M. C., Grunnet N. HLA-B27 polymorphism and worldwide susceptibility to ankylosing spondylitis. Tissue Antigens. 1997 Feb;49(2):116–123. doi: 10.1111/j.1399-0039.1997.tb02724.x. [DOI] [PubMed] [Google Scholar]
  20. Guerassimov A., Zhang Y., Banerjee S., Cartman A., Leroux J. Y., Rosenberg L. C., Esdaile J., Fitzcharles M. A., Poole A. R. Cellular immunity to the G1 domain of cartilage proteoglycan aggrecan is enhanced in patients with rheumatoid arthritis but only after removal of keratan sulfate. Arthritis Rheum. 1998 Jun;41(6):1019–1025. doi: 10.1002/1529-0131(199806)41:6<1019::AID-ART8>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  21. Hammer R. E., Maika S. D., Richardson J. A., Tang J. P., Taurog J. D. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell. 1990 Nov 30;63(5):1099–1112. doi: 10.1016/0092-8674(90)90512-d. [DOI] [PubMed] [Google Scholar]
  22. Harmey Dympna, Hessle Lovisa, Narisawa Sonoko, Johnson Kristen A., Terkeltaub Robert, Millán José Luis. Concerted regulation of inorganic pyrophosphate and osteopontin by akp2, enpp1, and ank: an integrated model of the pathogenesis of mineralization disorders. Am J Pathol. 2004 Apr;164(4):1199–1209. doi: 10.1016/S0002-9440(10)63208-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hermann E., Sucké B., Droste U., Meyer zum Büschenfelde K. H. Klebsiella pneumoniae-reactive T cells in blood and synovial fluid of patients with ankylosing spondylitis. Comparison with HLA-B27+ healthy control subjects in a limiting dilution study and determination of the specificity of synovial fluid T cell clones. Arthritis Rheum. 1995 Sep;38(9):1277–1282. doi: 10.1002/art.1780380916. [DOI] [PubMed] [Google Scholar]
  24. Ho A. M., Johnson M. D., Kingsley D. M. Role of the mouse ank gene in control of tissue calcification and arthritis. Science. 2000 Jul 14;289(5477):265–270. doi: 10.1126/science.289.5477.265. [DOI] [PubMed] [Google Scholar]
  25. Jobanputra P., Choy E. H., Kingsley G. H., Sieper J., Palacios-Boix A. A., Heinegård D., Panayi G. S. Cellular immunity to cartilage proteoglycans: relevance to the pathogenesis of ankylosing spondylitis. Ann Rheum Dis. 1992 Aug;51(8):959–962. doi: 10.1136/ard.51.8.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kabasakal Y., Garrett S. L., Calin A. The epidemiology of spondylodiscitis in ankylosing spondylitis--a controlled study. Br J Rheumatol. 1996 Jul;35(7):660–663. doi: 10.1093/rheumatology/35.7.660. [DOI] [PubMed] [Google Scholar]
  27. Kang J. D., Stefanovic-Racic M., McIntyre L. A., Georgescu H. I., Evans C. H. Toward a biochemical understanding of human intervertebral disc degeneration and herniation. Contributions of nitric oxide, interleukins, prostaglandin E2, and matrix metalloproteinases. Spine (Phila Pa 1976) 1997 May 15;22(10):1065–1073. doi: 10.1097/00007632-199705150-00003. [DOI] [PubMed] [Google Scholar]
  28. Karopoulos C., Rowley M. J., Ilic M. Z., Handley C. J. Presence of antibodies to native G1 domain of aggrecan core protein in synovial fluids from patients with various joint diseases. Arthritis Rheum. 1996 Dec;39(12):1990–1997. doi: 10.1002/art.1780391207. [DOI] [PubMed] [Google Scholar]
  29. Khare S. D., Luthra H. S., David C. S. Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking beta 2-microglobulin: a model of human spondyloarthropathies. J Exp Med. 1995 Oct 1;182(4):1153–1158. doi: 10.1084/jem.182.4.1153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kimmel C. A., Trammell C. A rapid procedure for routine double staining of cartilage and bone in fetal and adult animals. Stain Technol. 1981 Sep;56(5):271–273. doi: 10.3109/10520298109067325. [DOI] [PubMed] [Google Scholar]
  31. Laval S. H., Timms A., Edwards S., Bradbury L., Brophy S., Milicic A., Rubin L., Siminovitch K. A., Weeks D. E., Calin A. Whole-genome screening in ankylosing spondylitis: evidence of non-MHC genetic-susceptibility loci. Am J Hum Genet. 2001 Feb 27;68(4):918–926. doi: 10.1086/319509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Li N. L., Zhang D. Q., Zhou K. Y., Cartman A., Leroux J. Y., Poole A. R., Zhang Y. P. Isolation and characteristics of autoreactive T cells specific to aggrecan G1 domain from rheumatoid arthritis patients. Cell Res. 2000 Mar;10(1):39–49. doi: 10.1038/sj.cr.7290034. [DOI] [PubMed] [Google Scholar]
  33. Lipson S. J., Muir H. Vertebral osteophyte formation in experimental disc degeneration. Morphologic and proteoglycan changes over time. Arthritis Rheum. 1980 Mar;23(3):319–324. doi: 10.1002/art.1780230309. [DOI] [PubMed] [Google Scholar]
  34. Mahowald M. L., Krug H., Taurog J. Progressive ankylosis in mice. An animal model of spondylarthropathy. I. Clinical and radiographic findings. Arthritis Rheum. 1988 Nov;31(11):1390–1399. doi: 10.1002/art.1780311108. [DOI] [PubMed] [Google Scholar]
  35. Mikecz K., Glant T. T., Baron M., Poole A. R. Isolation of proteoglycan-specific T lymphocytes from patients with ankylosing spondylitis. Cell Immunol. 1988 Mar;112(1):55–63. doi: 10.1016/0008-8749(88)90275-4. [DOI] [PubMed] [Google Scholar]
  36. Mikecz K., Glant T. T., Poole A. R. Immunity to cartilage proteoglycans in BALB/c mice with progressive polyarthritis and ankylosing spondylitis induced by injection of human cartilage proteoglycan. Arthritis Rheum. 1987 Mar;30(3):306–318. doi: 10.1002/art.1780300310. [DOI] [PubMed] [Google Scholar]
  37. Miyamoto S., Yonenobu K., Ono K. Experimental cervical spondylosis in the mouse. Spine (Phila Pa 1976) 1991 Oct;16(10 Suppl):S495–S500. doi: 10.1097/00007632-199110001-00008. [DOI] [PubMed] [Google Scholar]
  38. Moskowitz R. W., Ziv I., Denko C. W., Boja B., Jones P. K., Adler J. H. Spondylosis in sand rats: a model of intervertebral disc degeneration and hyperostosis. J Orthop Res. 1990 May;8(3):401–411. doi: 10.1002/jor.1100080312. [DOI] [PubMed] [Google Scholar]
  39. Nickerson C. L., Hogen K. L., Luthra H. S., David C. S. Effect of H-2 genes on expression of HLA-B27 and Yersinia-induced arthritis. Scand J Rheumatol Suppl. 1990;87:85–90. doi: 10.3109/03009749009097063. [DOI] [PubMed] [Google Scholar]
  40. Otto J. M., Cs-Szabó G., Gallagher J., Velins S., Mikecz K., Buzás E. I., Enders J. T., Li Y., Olsen B. R., Glant T. T. Identification of multiple loci linked to inflammation and autoantibody production by a genome scan of a murine model of rheumatoid arthritis. Arthritis Rheum. 1999 Dec;42(12):2524–2531. doi: 10.1002/1529-0131(199912)42:12<2524::AID-ANR4>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  41. Pearce R. H., Grimmer B. J., Adams M. E. Degeneration and the chemical composition of the human lumbar intervertebral disc. J Orthop Res. 1987;5(2):198–205. doi: 10.1002/jor.1100050206. [DOI] [PubMed] [Google Scholar]
  42. Robinson W. P., van der Linden S. M., Khan M. A., Rentsch H. U., Cats A., Russell A., Thomson G. HLA-Bw60 increases susceptibility to ankylosing spondylitis in HLA-B27+ patients. Arthritis Rheum. 1989 Sep;32(9):1135–1141. doi: 10.1002/anr.1780320912. [DOI] [PubMed] [Google Scholar]
  43. Said-Nahal R., Miceli-Richard C., Berthelot J. M., Duché A., Dernis-Labous E., Le Blévec G., Saraux A., Perdriger A., Guis S., Claudepierre P. The familial form of spondylarthropathy: a clinical study of 115 multiplex families. Groupe Français d'Etude Génétique des Spondylarthropathies. Arthritis Rheum. 2000 Jun;43(6):1356–1365. doi: 10.1002/1529-0131(200006)43:6<1356::AID-ANR20>3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
  44. Schlosstein L., Terasaki P. I., Bluestone R., Pearson C. M. High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med. 1973 Apr 5;288(14):704–706. doi: 10.1056/NEJM197304052881403. [DOI] [PubMed] [Google Scholar]
  45. Schmidt M. B., Mow V. C., Chun L. E., Eyre D. R. Effects of proteoglycan extraction on the tensile behavior of articular cartilage. J Orthop Res. 1990 May;8(3):353–363. doi: 10.1002/jor.1100080307. [DOI] [PubMed] [Google Scholar]
  46. Schwimmbeck P. L., Yu D. T., Oldstone M. B. Autoantibodies to HLA B27 in the sera of HLA B27 patients with ankylosing spondylitis and Reiter's syndrome. Molecular mimicry with Klebsiella pneumoniae as potential mechanism of autoimmune disease. J Exp Med. 1987 Jul 1;166(1):173–181. doi: 10.1084/jem.166.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Shi Shuiliang, Ciurli Cristina, Cartman Annie, Pidoux Isabelle, Poole A. Robin, Zhang Yiping. Experimental immunity to the G1 domain of the proteoglycan versican induces spondylitis and sacroiliitis, of a kind seen in human spondylarthropathies. Arthritis Rheum. 2003 Oct;48(10):2903–2915. doi: 10.1002/art.11270. [DOI] [PubMed] [Google Scholar]
  48. Szántó Sándor, Bárdos Tamás, Szabó Zoltán, David Chella S., Buzás Edit I., Mikecz Katalin, Glant Tibor T. Induction of arthritis in HLA-DR4-humanized and HLA-DQ8-humanized mice by human cartilage proteoglycan aggrecan but only in the presence of an appropriate (non-MHC) genetic background. Arthritis Rheum. 2004 Jun;50(6):1984–1995. doi: 10.1002/art.20285. [DOI] [PubMed] [Google Scholar]
  49. Taurog J. D., Maika S. D., Satumtira N., Dorris M. L., McLean I. L., Yanagisawa H., Sayad A., Stagg A. J., Fox G. M., Lê O'Brien A. Inflammatory disease in HLA-B27 transgenic rats. Immunol Rev. 1999 Jun;169:209–223. doi: 10.1111/j.1600-065x.1999.tb01317.x. [DOI] [PubMed] [Google Scholar]
  50. Taurog J. D., Richardson J. A., Croft J. T., Simmons W. A., Zhou M., Fernández-Sueiro J. L., Balish E., Hammer R. E. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994 Dec 1;180(6):2359–2364. doi: 10.1084/jem.180.6.2359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Ugrinovic S., Mertz A., Wu P., Braun J., Sieper J. A single nonamer from the Yersinia 60-kDa heat shock protein is the target of HLA-B27-restricted CTL response in Yersinia-induced reactive arthritis. J Immunol. 1997 Dec 1;159(11):5715–5723. [PubMed] [Google Scholar]
  52. Waggett A. D., Ralphs J. R., Kwan A. P., Woodnutt D., Benjamin M. Characterization of collagens and proteoglycans at the insertion of the human Achilles tendon. Matrix Biol. 1998 Mar;16(8):457–470. doi: 10.1016/s0945-053x(98)90017-8. [DOI] [PubMed] [Google Scholar]
  53. Walcz E., Deák F., Erhardt P., Coulter S. N., Fülöp C., Horvath P., Doege K. J., Glant T. T. Complete coding sequence, deduced primary structure, chromosomal localization, and structural analysis of murine aggrecan. Genomics. 1994 Jul 15;22(2):364–371. doi: 10.1006/geno.1994.1396. [DOI] [PubMed] [Google Scholar]
  54. Yu David, Kuipers Jens G. Role of bacteria and HLA-B27 in the pathogenesis of reactive arthritis. Rheum Dis Clin North Am. 2003 Feb;29(1):21-36, v-vi. doi: 10.1016/s0889-857x(02)00082-0. [DOI] [PubMed] [Google Scholar]
  55. Zhang Yiping. Animal models of inflammatory spinal and sacroiliac joint diseases. Rheum Dis Clin North Am. 2003 Aug;29(3):631–645. doi: 10.1016/s0889-857x(03)00049-8. [DOI] [PubMed] [Google Scholar]
  56. Zou J., Zhang Y., Thiel A., Rudwaleit M., Shi S-L, Radbruch A., Poole R., Braun J., Sieper J. Predominant cellular immune response to the cartilage autoantigenic G1 aggrecan in ankylosing spondylitis and rheumatoid arthritis. Rheumatology (Oxford) 2003 Feb 28;42(7):846–855. doi: 10.1093/rheumatology/keg230. [DOI] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES