Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Sep;65(9):3906–3912. doi: 10.1128/iai.65.9.3906-3912.1997

Circulating promyelocytes and low levels of CD16 expression on polymorphonuclear leukocytes accompany early-onset periodontitis.

E Nemoto 1, M Nakamura 1, S Shoji 1, H Horiuchi 1
PMCID: PMC175557  PMID: 9284170

Abstract

Early-onset periodontitis (EOP) is characterized by rapidly progressive alveolar bone loss, chemotactic defects of neutrophils, and significant familial aggregation. We found immature myeloid lineage cells, defined as promyelocytes, in the peripheral blood in patients with EOP. A hematological examination of peripheral blood cells showed normal reference values regarding cell proportions. Flow cytometry revealed significantly lower expression of CD16, a glycosylphosphatidylinositol (GPI)-anchored protein, on peripheral neutrophils in patients compared with those in age- and sex-matched healthy controls, whereas the levels of CD11a and CD11b expression were similar. The chemotactic response of neutrophils was lower toward not only formyl-methionyl-leucyl-phenylalanine but also complement fragment C5a than that of healthy controls. The expression of another GPI-anchored protein, CD14, was equally expressed by controls and patients. Therefore, the low level of CD16 expression was not due to the incomplete synthesis of the GPI anchor. GPI anchors of CD16 on neutrophils from controls and patients were both partially resistant to phosphatidylinositol-specific phospholipase C. The presence of promyelocytes in peripheral blood, low expression of CD16, and low chemotactic response of neutrophils suggest that patients with EOP have an abnormal maturation system in myeloid lineage cells in the bone marrow, which may be associated with the onset and course of EOP.

Full Text

The Full Text of this article is available as a PDF (188.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal S., Suzuki J. B., Piesco N. P., Aichelmann-Reidy M. B. Neutrophil function in juvenile periodontitis: induction of adherence. Oral Microbiol Immunol. 1994 Oct;9(5):262–271. doi: 10.1111/j.1399-302x.1994.tb00069.x. [DOI] [PubMed] [Google Scholar]
  2. Anderson D. C., Schmalsteig F. C., Finegold M. J., Hughes B. J., Rothlein R., Miller L. J., Kohl S., Tosi M. F., Jacobs R. L., Waldrop T. C. The severe and moderate phenotypes of heritable Mac-1, LFA-1 deficiency: their quantitative definition and relation to leukocyte dysfunction and clinical features. J Infect Dis. 1985 Oct;152(4):668–689. doi: 10.1093/infdis/152.4.668. [DOI] [PubMed] [Google Scholar]
  3. Anderson D. C., Springer T. A. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med. 1987;38:175–194. doi: 10.1146/annurev.me.38.020187.001135. [DOI] [PubMed] [Google Scholar]
  4. Asman B., Bergström K. Expression of Fc-gamma-RIII and fibronectin in peripheral polymorphonuclear neutrophils with increased response to Fc stimulation in patients with juvenile periodontitis. Arch Oral Biol. 1992 Dec;37(12):991–995. doi: 10.1016/0003-9969(92)90030-c. [DOI] [PubMed] [Google Scholar]
  5. Asman B. Peripheral PMN cells in juvenile periodontitis. Increased release of elastase and of oxygen radicals after stimulation with opsonized bacteria. J Clin Periodontol. 1988 Jul;15(6):360–364. doi: 10.1111/j.1600-051x.1988.tb01012.x. [DOI] [PubMed] [Google Scholar]
  6. Babcock G. F., Alexander J. W., Warden G. D. Flow cytometric analysis of neutrophil subsets in thermally injured patients developing infection. Clin Immunol Immunopathol. 1990 Jan;54(1):117–125. doi: 10.1016/0090-1229(90)90011-e. [DOI] [PubMed] [Google Scholar]
  7. Berton G., Laudanna C., Sorio C., Rossi F. Generation of signals activating neutrophil functions by leukocyte integrins: LFA-1 and gp150/95, but not CR3, are able to stimulate the respiratory burst of human neutrophils. J Cell Biol. 1992 Feb;116(4):1007–1017. doi: 10.1083/jcb.116.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boros P., Gardos E., Bekesi G. J., Unkeless J. C. Change in expression of Fc gamma RIII (CD16) on neutrophils from human immunodeficiency virus-infected individuals. Clin Immunol Immunopathol. 1990 Feb;54(2):281–289. doi: 10.1016/0090-1229(90)90089-9. [DOI] [PubMed] [Google Scholar]
  9. Brunkhorst B. A., Strohmeier G., Lazzari K., Weil G., Melnick D., Fleit H. B., Simons E. R. Differential roles of Fc gamma RII and Fc gamma RIII in immune complex stimulation of human neutrophils. J Biol Chem. 1992 Oct 15;267(29):20659–20666. [PubMed] [Google Scholar]
  10. Büchner T., Hiddemann W., Koenigsmann M., Zühlsdorf M., Wörmann B., Boeckmann A., Freire E. A., Innig G., Maschmeyer G., Ludwig W. D. Recombinant human granulocyte-macrophage colony-stimulating factor after chemotherapy in patients with acute myeloid leukemia at higher age or after relapse. Blood. 1991 Sep 1;78(5):1190–1197. [PubMed] [Google Scholar]
  11. Cabañas C., Hogg N. Ligand intercellular adhesion molecule 1 has a necessary role in activation of integrin lymphocyte function-associated molecule 1. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5838–5842. doi: 10.1073/pnas.90.12.5838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Campana D., Sheridan B., Tidman N., Hoffbrand A. V., Janossy G. Human leukocyte function-associated antigens on lympho-hemopoietic precursor cells. Eur J Immunol. 1986 May;16(5):537–542. doi: 10.1002/eji.1830160513. [DOI] [PubMed] [Google Scholar]
  13. Carr R., Davies J. M. Abnormal FcRIII expression by neutrophils from very preterm neonates. Blood. 1990 Aug 1;76(3):607–611. [PubMed] [Google Scholar]
  14. Carulli G., Gianfaldoni M. L., Azzara A., Papineschi F., Vanacore R., Minnucci S., Testi R., Ambrogi F. FcRIII (CD16) expression on neutrophils from chronic myeloid leukemia. A flow cytometric study. Leuk Res. 1992 Dec;16(12):1203–1209. doi: 10.1016/0145-2126(92)90120-v. [DOI] [PubMed] [Google Scholar]
  15. Cotter T. G., Henson P. M. A cell surface differentiation antigen involved in human neutrophil chemotaxis and degranulation. Clin Exp Immunol. 1983 Jul;53(1):249–253. [PMC free article] [PubMed] [Google Scholar]
  16. Cotter T. G., Spears P., Henson P. M. A monoclonal antibody inhibiting human neutrophil chemotaxis and degranulation. J Immunol. 1981 Oct;127(4):1355–1360. [PubMed] [Google Scholar]
  17. Dransfield I., Buckle A. M., Savill J. S., McDowall A., Haslett C., Hogg N. Neutrophil apoptosis is associated with a reduction in CD16 (Fc gamma RIII) expression. J Immunol. 1994 Aug 1;153(3):1254–1263. [PubMed] [Google Scholar]
  18. Dustin M. L., Carpen O., Springer T. A. Regulation of locomotion and cell-cell contact area by the LFA-1 and ICAM-1 adhesion receptors. J Immunol. 1992 May 1;148(9):2654–2663. [PubMed] [Google Scholar]
  19. Ebina T., Murata K. Antitumor effect of PSK at a distant site: inductions of interleukin-8-like factor and macrophage chemotactic factor in murine tumor. Jpn J Cancer Res. 1990 Dec;81(12):1307–1313. doi: 10.1111/j.1349-7006.1990.tb02695.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ferrante A., Thong Y. H. Optimal conditions for simultaneous purification of mononuclear and polymorphonuclear leucocytes from human blood by the Hypaque-Ficoll method. J Immunol Methods. 1980;36(2):109–117. doi: 10.1016/0022-1759(80)90036-8. [DOI] [PubMed] [Google Scholar]
  21. Fleit H. B., Wright S. D., Durie C. J., Valinsky J. E., Unkeless J. C. Ontogeny of Fc receptors and complement receptor (CR3) during human myeloid differentiation. J Clin Invest. 1984 Feb;73(2):516–525. doi: 10.1172/JCI111238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Frampton J. E., Yarker Y. E., Goa K. L. Lenograstim. A review of its pharmacological properties and therapeutic efficacy in neutropenia and related clinical settings. Drugs. 1995 May;49(5):767–793. doi: 10.2165/00003495-199549050-00009. [DOI] [PubMed] [Google Scholar]
  23. Futerman A. H., Low M. G., Michaelson D. M., Silman I. Solubilization of membrane-bound acetylcholinesterase by a phosphatidylinositol-specific phospholipase C. J Neurochem. 1985 Nov;45(5):1487–1494. doi: 10.1111/j.1471-4159.1985.tb07217.x. [DOI] [PubMed] [Google Scholar]
  24. Genco R. J., Van Dyke T. E., Levine M. J., Nelson R. D., Wilson M. E. 1985 Kreshover lecture. Molecular factors influencing neutrophil defects in periodontal disease. J Dent Res. 1986 Dec;65(12):1379–1391. doi: 10.1177/00220345860650120201. [DOI] [PubMed] [Google Scholar]
  25. Gustafsson A., Asman B. Increased release of free oxygen radicals from peripheral neutrophils in adult periodontitis after Fc delta-receptor stimulation. J Clin Periodontol. 1996 Jan;23(1):38–44. doi: 10.1111/j.1600-051x.1996.tb00502.x. [DOI] [PubMed] [Google Scholar]
  26. Huizinga T. W., van Kemenade F., Koenderman L., Dolman K. M., von dem Borne A. E., Tetteroo P. A., Roos D. The 40-kDa Fc gamma receptor (FcRII) on human neutrophils is essential for the IgG-induced respiratory burst and IgG-induced phagocytosis. J Immunol. 1989 Apr 1;142(7):2365–2369. [PubMed] [Google Scholar]
  27. Huizinga T. W., van der Schoot C. E., Jost C., Klaassen R., Kleijer M., von dem Borne A. E., Roos D., Tetteroo P. A. The PI-linked receptor FcRIII is released on stimulation of neutrophils. Nature. 1988 Jun 16;333(6174):667–669. doi: 10.1038/333667a0. [DOI] [PubMed] [Google Scholar]
  28. Kew R. R., Grimaldi C. M., Furie M. B., Fleit H. B. Human neutrophil Fc gamma RIIIB and formyl peptide receptors are functionally linked during formyl-methionyl-leucyl-phenylalanine-induced chemotaxis. J Immunol. 1992 Aug 1;149(3):989–997. [PubMed] [Google Scholar]
  29. Kishimoto T. K., Larson R. S., Corbi A. L., Dustin M. L., Staunton D. E., Springer T. A. The leukocyte integrins. Adv Immunol. 1989;46:149–182. doi: 10.1016/s0065-2776(08)60653-7. [DOI] [PubMed] [Google Scholar]
  30. Kushner B. H., Cheung N. K. Absolute requirement of CD11/CD18 adhesion molecules, FcRII and the phosphatidylinositol-linked FcRIII for monoclonal antibody-mediated neutrophil antihuman tumor cytotoxicity. Blood. 1992 Mar 15;79(6):1484–1490. [PubMed] [Google Scholar]
  31. Lavine W. S., Maderazo E. G., Stolman J., Ward P. A., Cogen R. B., Greenblatt I., Robertson P. B. Impaired neutrophil chemotaxis in patients with juvenile and rapidly progressing periodontitis. J Periodontal Res. 1979 Jan;14(1):10–19. doi: 10.1111/j.1600-0765.1979.tb00213.x. [DOI] [PubMed] [Google Scholar]
  32. Lavine W. S., Page R. C., Padgett G. A. Host response in chronic periodontal disease. V. The dental and periodontal status of mink and mice affected by Chediak-Higashi syndrome. J Periodontol. 1976 Nov;47(11):621–635. doi: 10.1902/jop.1976.47.11.621. [DOI] [PubMed] [Google Scholar]
  33. Low M. G., Kincade P. W. Phosphatidylinositol is the membrane-anchoring domain of the Thy-1 glycoprotein. Nature. 1985 Nov 7;318(6041):62–64. doi: 10.1038/318062a0. [DOI] [PubMed] [Google Scholar]
  34. Low M. G. The glycosyl-phosphatidylinositol anchor of membrane proteins. Biochim Biophys Acta. 1989 Dec 6;988(3):427–454. doi: 10.1016/0304-4157(89)90014-2. [DOI] [PubMed] [Google Scholar]
  35. Marazita M. L., Burmeister J. A., Gunsolley J. C., Koertge T. E., Lake K., Schenkein H. A. Evidence for autosomal dominant inheritance and race-specific heterogeneity in early-onset periodontitis. J Periodontol. 1994 Jun;65(6):623–630. doi: 10.1902/jop.1994.65.6.623. [DOI] [PubMed] [Google Scholar]
  36. Miller B. A., Antognetti G., Springer T. A. Identification of cell surface antigens present on murine hematopoietic stem cells. J Immunol. 1985 May;134(5):3286–3290. [PubMed] [Google Scholar]
  37. Moore R. D., Keruly J. C., Chaisson R. E. Neutropenia and bacterial infection in acquired immunodeficiency syndrome. Arch Intern Med. 1995 Oct 9;155(18):1965–1970. [PubMed] [Google Scholar]
  38. Murphy M. F., Metcalfe P., Waters A. H., Carne C. A., Weller I. V., Linch D. C., Smith A. Incidence and mechanism of neutropenia and thrombocytopenia in patients with human immunodeficiency virus infection. Br J Haematol. 1987 Jul;66(3):337–340. doi: 10.1111/j.1365-2141.1987.tb06920.x. [DOI] [PubMed] [Google Scholar]
  39. Nemoto E., Stohlman S., Dennert G. Release of a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase from cytotoxic T cells upon activation. J Immunol. 1996 Jan 1;156(1):85–92. [PubMed] [Google Scholar]
  40. Page R. C., Beatty P., Waldrop T. C. Molecular basis for the functional abnormality in neutrophils from patients with generalized prepubertal periodontitis. J Periodontal Res. 1987 May;22(3):182–183. doi: 10.1111/j.1600-0765.1987.tb01562.x. [DOI] [PubMed] [Google Scholar]
  41. Prichard J. F., Ferguson D. M., Windmiller J., Hurt W. C. Prepubertal periodontitis affecting the deciduous and permanent dentition in a patient with cyclic neutropenia. A case report and discussion. J Periodontol. 1984 Feb;55(2):114–122. doi: 10.1902/jop.1984.55.2.114. [DOI] [PubMed] [Google Scholar]
  42. Roberts W. L., Myher J. J., Kuksis A., Low M. G., Rosenberry T. L. Lipid analysis of the glycoinositol phospholipid membrane anchor of human erythrocyte acetylcholinesterase. Palmitoylation of inositol results in resistance to phosphatidylinositol-specific phospholipase C. J Biol Chem. 1988 Dec 15;263(35):18766–18775. [PubMed] [Google Scholar]
  43. Ross G. D. Structure and function of membrane complement receptors. Summary. Fed Proc. 1982 Dec;41(14):3089–3093. [PubMed] [Google Scholar]
  44. Salmon J. E., Brogle N. L., Edberg J. C., Kimberly R. P. Fc gamma receptor III induces actin polymerization in human neutrophils and primes phagocytosis mediated by Fc gamma receptor II. J Immunol. 1991 Feb 1;146(3):997–1004. [PubMed] [Google Scholar]
  45. Saxby M. S. Juvenile periodontitis: an epidemiological study in the west Midlands of the United Kingdom. J Clin Periodontol. 1987 Nov;14(10):594–598. doi: 10.1111/j.1600-051x.1987.tb01521.x. [DOI] [PubMed] [Google Scholar]
  46. Schleiffenbaum B., Moser R., Patarroyo M., Fehr J. The cell surface glycoprotein Mac-1 (CD11b/CD18) mediates neutrophil adhesion and modulates degranulation independently of its quantitative cell surface expression. J Immunol. 1989 May 15;142(10):3537–3545. [PubMed] [Google Scholar]
  47. Selvaraj P., Rosse W. F., Silber R., Springer T. A. The major Fc receptor in blood has a phosphatidylinositol anchor and is deficient in paroxysmal nocturnal haemoglobinuria. Nature. 1988 Jun 9;333(6173):565–567. doi: 10.1038/333565a0. [DOI] [PubMed] [Google Scholar]
  48. Soloski M. J., Lattimore A., Hereld D., Krakow J. L., Low M. G., Einhorn G. Further characterization of the membrane anchor found on the tissue-specific class I molecule Qa2. J Immunol. 1988 Jun 1;140(11):3858–3866. [PubMed] [Google Scholar]
  49. Stiernberg J., Low M. G., Flaherty L., Kincade P. W. Removal of lymphocyte surface molecules with phosphatidylinositol-specific phospholipase C: effects on mitogen responses and evidence that ThB and certain Qa antigens are membrane-anchored via phosphatidylinositol. J Immunol. 1987 Jun 1;138(11):3877–3884. [PubMed] [Google Scholar]
  50. Terstappen L. W., Safford M., Loken M. R. Flow cytometric analysis of human bone marrow. III. Neutrophil maturation. Leukemia. 1990 Sep;4(9):657–663. [PubMed] [Google Scholar]
  51. Van Dyke T. E., Levine M. J., Tabak L. A., Genco R. J. Juvenile periodontitis as a model for neutrophil function: reduced binding of the complement chemotactic fragment, C5a. J Dent Res. 1983 Aug;62(8):870–872. doi: 10.1177/00220345830620080301. [DOI] [PubMed] [Google Scholar]
  52. Van Dyke T. E., Levine M. J., Tabak L. A., Genco R. J. Reduced chemotactic peptide binding in juvenile periodontitis: a model for neutrophil function. Biochem Biophys Res Commun. 1981 Jun 16;100(3):1278–1284. doi: 10.1016/0006-291x(81)91962-8. [DOI] [PubMed] [Google Scholar]
  53. Van Dyke T. E., Wilson-Burrows C., Offenbacher S., Henson P. Association of an abnormality of neutrophil chemotaxis in human periodontal disease with a cell surface protein. Infect Immun. 1987 Sep;55(9):2262–2267. doi: 10.1128/iai.55.9.2262-2267.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ware R. E., Rosse W. F., Hall S. E. Immunophenotypic analysis of reticulocytes in paroxysmal nocturnal hemoglobinuria. Blood. 1995 Aug 15;86(4):1586–1589. [PubMed] [Google Scholar]
  55. Weiss S. J. Tissue destruction by neutrophils. N Engl J Med. 1989 Feb 9;320(6):365–376. doi: 10.1056/NEJM198902093200606. [DOI] [PubMed] [Google Scholar]
  56. Wright S. D., Ramos R. A., Hermanowski-Vosatka A., Rockwell P., Detmers P. A. Activation of the adhesive capacity of CR3 on neutrophils by endotoxin: dependence on lipopolysaccharide binding protein and CD14. J Exp Med. 1991 May 1;173(5):1281–1286. doi: 10.1084/jem.173.5.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. van de Winkel J. G., Anderson C. L. Biology of human immunoglobulin G Fc receptors. J Leukoc Biol. 1991 May;49(5):511–524. doi: 10.1002/jlb.49.5.511. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES