Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Sep;65(9):3924–3932. doi: 10.1128/iai.65.9.3924-3932.1997

An Edwardsiella tarda strain containing a mutation in a gene with homology to shlB and hpmB is defective for entry into epithelial cells in culture.

E J Strauss 1, N Ghori 1, S Falkow 1
PMCID: PMC175559  PMID: 9284172

Abstract

Edwardsiella tarda is an enteric pathogen that causes diarrhea, wound infections, and death due to septicemia. This species is capable of invading human epithelial cell lines, and we have now been able to follow the entry and replication of E. tarda within tissue culture host cells. E. tarda escapes from the endocytic vacuole within minutes of entry and then replicates within the cytoplasm. Unlike other well-studied bacteria that replicate and reside in the cytoplasm, we never observed this organism moving directly from cell to cell; instead the bacteria spread by lysing the plasma membrane after several rounds of replication. Efforts to study the interactions of E. tarda with tissue culture cells are complicated by the presence of a potent cytotoxin that the bacterium produces. Using transposon mutagenesis, we isolated a noncytotoxic strain of E. tarda. This mutant is also defective for hemolysin production. The dual phenotype of this strain is consistent with the hypothesis that cytotoxicity is due to the previously characterized E. tarda hemolysin activity. The nonhemolytic strain is also unable to enter HEp-2 cells. The disrupted gene has sequence similarity to members of a family of genes required for transport and activation of the hemolysin genes, shlA and hpmA. A cosmid bearing 40 kb of E. tarda DNA, including wild-type copies of the E. tarda homologs of the transporter-activator protein and the hemolysin itself, confers hemolytic, cytotoxic, and invasive abilities upon normally nonhemolytic, noncytotoxic, and noninvasive strains of Escherichia coli. Sequence data indicate that the genes required for hemolytic activity are linked to a transposable element, suggesting that they arose in the E. tarda genome by horizontal transfer.

Full Text

The Full Text of this article is available as a PDF (996.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braun V., Focareta T. Pore-forming bacterial protein hemolysins (cytolysins). Crit Rev Microbiol. 1991;18(2):115–158. doi: 10.3109/10408419109113511. [DOI] [PubMed] [Google Scholar]
  2. Braun V., Hobbie S., Ondraczek R. Serratia marcescens forms a new type of cytolysin. FEMS Microbiol Lett. 1992 Dec 15;100(1-3):299–305. doi: 10.1111/j.1574-6968.1992.tb14056.x. [DOI] [PubMed] [Google Scholar]
  3. Braun V., Neuss B., Ruan Y., Schiebel E., Schöffler H., Jander G. Identification of the Serratia marcescens hemolysin determinant by cloning into Escherichia coli. J Bacteriol. 1987 May;169(5):2113–2120. doi: 10.1128/jb.169.5.2113-2120.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braun V., Ondraczek R., Hobbie S. Activation and secretion of Serratia hemolysin. Zentralbl Bakteriol. 1993 Apr;278(2-3):306–315. doi: 10.1016/s0934-8840(11)80847-9. [DOI] [PubMed] [Google Scholar]
  5. Carbonell G. V., Vidotto M. C. Virulence factors in Serratia marcescens: cell-bound hemolysin and aerobactin. Braz J Med Biol Res. 1992;25(1):1–8. [PubMed] [Google Scholar]
  6. Chen J. D., Lai S. Y., Huang S. L. Molecular cloning, characterization, and sequencing of the hemolysin gene from Edwardsiella tarda. Arch Microbiol. 1996 Jan;165(1):9–17. doi: 10.1007/s002030050290. [DOI] [PubMed] [Google Scholar]
  7. Chippendale G. R., Warren J. W., Trifillis A. L., Mobley H. L. Internalization of Proteus mirabilis by human renal epithelial cells. Infect Immun. 1994 Aug;62(8):3115–3121. doi: 10.1128/iai.62.8.3115-3121.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. High N., Mounier J., Prévost M. C., Sansonetti P. J. IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J. 1992 May;11(5):1991–1999. doi: 10.1002/j.1460-2075.1992.tb05253.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirono I., Tange N., Aoki T. Iron-regulated haemolysin gene from Edwardsiella tarda. Mol Microbiol. 1997 May;24(4):851–856. doi: 10.1046/j.1365-2958.1997.3971760.x. [DOI] [PubMed] [Google Scholar]
  10. Janda J. M., Abbott S. L. Expression of an iron-regulated hemolysin by Edwardsiella tarda. FEMS Microbiol Lett. 1993 Aug 1;111(2-3):275–280. doi: 10.1111/j.1574-6968.1993.tb06398.x. [DOI] [PubMed] [Google Scholar]
  11. Janda J. M., Abbott S. L. Infections associated with the genus Edwardsiella: the role of Edwardsiella tarda in human disease. Clin Infect Dis. 1993 Oct;17(4):742–748. doi: 10.1093/clinids/17.4.742. [DOI] [PubMed] [Google Scholar]
  12. Janda J. M., Abbott S. L., Kroske-Bystrom S., Cheung W. K., Powers C., Kokka R. P., Tamura K. Pathogenic properties of Edwardsiella species. J Clin Microbiol. 1991 Sep;29(9):1997–2001. doi: 10.1128/jcm.29.9.1997-2001.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Janda J. M., Abbott S. L., Oshiro L. S. Penetration and replication of Edwardsiella spp. in HEp-2 cells. Infect Immun. 1991 Jan;59(1):154–161. doi: 10.1128/iai.59.1.154-161.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jones B. D., Falkow S. Identification and characterization of a Salmonella typhimurium oxygen-regulated gene required for bacterial internalization. Infect Immun. 1994 Sep;62(9):3745–3752. doi: 10.1128/iai.62.9.3745-3752.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jordan G. W., Hadley W. K. Human infection with Edwardsiella tarda. Ann Intern Med. 1969 Feb;70(2):283–288. doi: 10.7326/0003-4819-70-2-283. [DOI] [PubMed] [Google Scholar]
  16. Kourany M., Vasquez M. A., Saenz R. Edwardsiellosis in man and animals in Panamá: clinical and epidemiological characteristics. Am J Trop Med Hyg. 1977 Nov;26(6 Pt 1):1183–1190. doi: 10.4269/ajtmh.1977.26.1183. [DOI] [PubMed] [Google Scholar]
  17. Lee C. A., Jones B. D., Falkow S. Identification of a Salmonella typhimurium invasion locus by selection for hyperinvasive mutants. Proc Natl Acad Sci U S A. 1992 Mar 1;89(5):1847–1851. doi: 10.1073/pnas.89.5.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. MOORE A. E., SABACHEWSKY L., TOOLAN H. W. Culture characteristics of four permanent lines of human cancer cells. Cancer Res. 1955 Oct;15(9):598–602. [PubMed] [Google Scholar]
  19. Mecsas J. J., Strauss E. J. Molecular mechanisms of bacterial virulence: type III secretion and pathogenicity islands. Emerg Infect Dis. 1996 Oct-Dec;2(4):270–288. doi: 10.3201/eid0204.960403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mobley H. L., Belas R., Lockatell V., Chippendale G., Trifillis A. L., Johnson D. E., Warren J. W. Construction of a flagellum-negative mutant of Proteus mirabilis: effect on internalization by human renal epithelial cells and virulence in a mouse model of ascending urinary tract infection. Infect Immun. 1996 Dec;64(12):5332–5340. doi: 10.1128/iai.64.12.5332-5340.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mobley H. L., Belas R. Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol. 1995 Jul;3(7):280–284. doi: 10.1016/s0966-842x(00)88945-3. [DOI] [PubMed] [Google Scholar]
  22. Mobley H. L., Chippendale G. R., Swihart K. G., Welch R. A. Cytotoxicity of the HpmA hemolysin and urease of Proteus mirabilis and Proteus vulgaris against cultured human renal proximal tubular epithelial cells. Infect Immun. 1991 Jun;59(6):2036–2042. doi: 10.1128/iai.59.6.2036-2042.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Palmer K. L., Munson R. S., Jr Cloning and characterization of the genes encoding the hemolysin of Haemophilus ducreyi. Mol Microbiol. 1995 Dec;18(5):821–830. doi: 10.1111/j.1365-2958.1995.18050821.x. [DOI] [PubMed] [Google Scholar]
  24. Pascopella L., Raupach B., Ghori N., Monack D., Falkow S., Small P. L. Host restriction phenotypes of Salmonella typhi and Salmonella gallinarum. Infect Immun. 1995 Nov;63(11):4329–4335. doi: 10.1128/iai.63.11.4329-4335.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Poole K., Schiebel E., Braun V. Molecular characterization of the hemolysin determinant of Serratia marcescens. J Bacteriol. 1988 Jul;170(7):3177–3188. doi: 10.1128/jb.170.7.3177-3188.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Swihart K. G., Welch R. A. Cytotoxic activity of the Proteus hemolysin HpmA. Infect Immun. 1990 Jun;58(6):1861–1869. doi: 10.1128/iai.58.6.1861-1869.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Theriot J. A. The cell biology of infection by intracellular bacterial pathogens. Annu Rev Cell Dev Biol. 1995;11:213–239. doi: 10.1146/annurev.cb.11.110195.001241. [DOI] [PubMed] [Google Scholar]
  28. Uphoff T. S., Welch R. A. Nucleotide sequencing of the Proteus mirabilis calcium-independent hemolysin genes (hpmA and hpmB) reveals sequence similarity with the Serratia marcescens hemolysin genes (shlA and shlB). J Bacteriol. 1990 Mar;172(3):1206–1216. doi: 10.1128/jb.172.3.1206-1216.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Van Damme L. R., Vandepitte J. Frequent isolation of Edwardsiella tarda and Pleisiomonas shigelloides from healthy Zairese freshwater fish: a possible source of sporadic diarrhea in the tropics. Appl Environ Microbiol. 1980 Mar;39(3):475–479. doi: 10.1128/aem.39.3.475-479.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Watson J. J., White F. H. Hemolysins of Edwardsiella tarda. Can J Comp Med. 1979 Jan;43(1):78–83. [PMC free article] [PubMed] [Google Scholar]
  31. Wilson J. P., Waterer R. R., Wofford J. D., Jr, Chapman S. W. Serious infections with Edwardsiella tarda. A case report and review of the literature. Arch Intern Med. 1989 Jan;149(1):208–210. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES