Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Oct;65(10):4011–4016. doi: 10.1128/iai.65.10.4011-4016.1997

Characterization of a methyl-accepting chemotaxis protein gene, dmcA, from the oral spirochete Treponema denticola.

M Kataoka 1, H Li 1, S Arakawa 1, H Kuramitsu 1
PMCID: PMC175576  PMID: 9317000

Abstract

A gene, dmcA, expressing a methyl-accepting chemotaxis protein (MCP) from the oral spirochete Treponema denticola has been characterized. The gene was initially identified as an open reading frame immediately upstream from the previously characterized prtB protease gene of strain ATCC 35405. Nucleotide sequencing of the dmcA gene revealed a potential 57-kDa protein product with extensive homology with the signaling regions of MCPs from a variety of bacteria. The protein expressed in Escherichia coli cross-reacted with anti-Trg (E. coli MCP) serum, confirming its homology with MCPs. Northern blot and primer extension analyses identified the transcription start site of the monocistronic dmcA mRNA. By utilizing a T. denticola gene inactivation system recently developed in this laboratory, a mutant defective in the dmcA gene, HL0501, was constructed. The mutant was demonstrated to be defective in chemotaxis toward nutrients. In addition, the methylation profiles of cellular proteins indicated altered MCPs in the mutant relative to those of the parental strain. These results indicate that we have identified an MCP gene in the oral spirochete which plays a significant role in the chemotactic response of the organism.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alm R. A., Manning P. A. Characterization of the hlyB gene and its role in the production of the El Tor haemolysin of Vibrio cholerae O1. Mol Microbiol. 1990 Mar;4(3):413–425. doi: 10.1111/j.1365-2958.1990.tb00608.x. [DOI] [PubMed] [Google Scholar]
  2. Arakawa S., Kuramitsu H. K. Cloning and sequence analysis of a chymotrypsinlike protease from Treponema denticola. Infect Immun. 1994 Aug;62(8):3424–3433. doi: 10.1128/iai.62.8.3424-3433.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boehringer H., Taichman N. S., Shenker B. J. Suppression of fibroblast proliferation by oral spirochetes. Infect Immun. 1984 Jul;45(1):155–159. doi: 10.1128/iai.45.1.155-159.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boyd A., Kendall K., Simon M. I. Structure of the serine chemoreceptor in Escherichia coli. Nature. 1983 Feb 17;301(5901):623–626. doi: 10.1038/301623a0. [DOI] [PubMed] [Google Scholar]
  5. Chan E. C., Qiu Y. S., Siboo R., Noble P. Evidence for two distinct locomotory phenotypes of Treponema denticola ATCC 35405. Oral Microbiol Immunol. 1995 Apr;10(2):122–124. doi: 10.1111/j.1399-302x.1995.tb00131.x. [DOI] [PubMed] [Google Scholar]
  6. Charon N. W., Greenberg E. P., Koopman M. B., Limberger R. J. Spirochete chemotaxis, motility, and the structure of the spirochetal periplasmic flagella. Res Microbiol. 1992 Jul-Aug;143(6):597–603. doi: 10.1016/0923-2508(92)90117-7. [DOI] [PubMed] [Google Scholar]
  7. Cheng S. L., Siboo R., Quee T. C., Johnson J. L., Mayberry W. R., Chan E. C. Comparative study of six random oral spirochete isolates. Serological heterogeneity of Treponema denticola. J Periodontal Res. 1985 Nov;20(6):602–612. doi: 10.1111/j.1600-0765.1985.tb00844.x. [DOI] [PubMed] [Google Scholar]
  8. Ebersole J. L., Kesavalu L., Schneider S. L., Machen R. L., Holt S. C. Comparative virulence of periodontopathogens in a mouse abscess model. Oral Dis. 1995 Sep;1(3):115–128. doi: 10.1111/j.1601-0825.1995.tb00174.x. [DOI] [PubMed] [Google Scholar]
  9. Greenberg E. P., Canale-Parola E. Chemotaxis in Spirochaeta aurantia. J Bacteriol. 1977 Apr;130(1):485–494. doi: 10.1128/jb.130.1.485-494.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hagman K. E., Porcella S. F., Popova T. G., Norgard M. V. Evidence for a methyl-accepting chemotaxis protein gene (mcp1) that encodes a putative sensory transducer in virulent Treponema pallidum. Infect Immun. 1997 May;65(5):1701–1709. doi: 10.1128/iai.65.5.1701-1709.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hanlon D. W., Ordal G. W. Cloning and characterization of genes encoding methyl-accepting chemotaxis proteins in Bacillus subtilis. J Biol Chem. 1994 May 13;269(19):14038–14046. [PubMed] [Google Scholar]
  12. Kathariou S., Greenberg E. P. Chemoattractants elicit methylation of specific polypeptides in Spirochaeta aurantia. J Bacteriol. 1983 Oct;156(1):95–100. doi: 10.1128/jb.156.1.95-100.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kort E. N., Goy M. F., Larsen S. H., Adler J. Methylation of a membrane protein involved in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3939–3943. doi: 10.1073/pnas.72.10.3939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Li H., Ruby J., Charon N., Kuramitsu H. Gene inactivation in the oral spirochete Treponema denticola: construction of an flgE mutant. J Bacteriol. 1996 Jun;178(12):3664–3667. doi: 10.1128/jb.178.12.3664-3667.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Limberger R. J., Slivienski L. L., Samsonoff W. A. Genetic and biochemical analysis of the flagellar hook of Treponema phagedenis. J Bacteriol. 1994 Jun;176(12):3631–3637. doi: 10.1128/jb.176.12.3631-3637.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Liu J. D., Parkinson J. S. Role of CheW protein in coupling membrane receptors to the intracellular signaling system of bacterial chemotaxis. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8703–8707. doi: 10.1073/pnas.86.22.8703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Loesche W. J. The role of spirochetes in periodontal disease. Adv Dent Res. 1988 Nov;2(2):275–283. doi: 10.1177/08959374880020021201. [DOI] [PubMed] [Google Scholar]
  19. Manning P. A. Surface-associated and soluble components of Vibrio cholerae involved in bacteria-host interactions. Curr Top Microbiol Immunol. 1994;192:265–281. doi: 10.1007/978-3-642-78624-2_12. [DOI] [PubMed] [Google Scholar]
  20. Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
  21. Morgan D. G., Baumgartner J. W., Hazelbauer G. L. Proteins antigenically related to methyl-accepting chemotaxis proteins of Escherichia coli detected in a wide range of bacterial species. J Bacteriol. 1993 Jan;175(1):133–140. doi: 10.1128/jb.175.1.133-140.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ohta K., Makinen K. K., Loesche W. J. Purification and characterization of an enzyme produced by Treponema denticola capable of hydrolyzing synthetic trypsin substrates. Infect Immun. 1986 Jul;53(1):213–220. doi: 10.1128/iai.53.1.213-220.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Paster B. J., Dewhirst F. E., Weisburg W. G., Tordoff L. A., Fraser G. J., Hespell R. B., Stanton T. B., Zablen L., Mandelco L., Woese C. R. Phylogenetic analysis of the spirochetes. J Bacteriol. 1991 Oct;173(19):6101–6109. doi: 10.1128/jb.173.19.6101-6109.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Riviere G. R., Thomas D. D., Cobb C. M. In vitro model of Treponema pallidum invasiveness. Infect Immun. 1989 Aug;57(8):2267–2271. doi: 10.1128/iai.57.8.2267-2271.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Shiroza T., Kuramitsu H. K. Construction of a model secretion system for oral streptococci. Infect Immun. 1993 Sep;61(9):3745–3755. doi: 10.1128/iai.61.9.3745-3755.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Simonson L. G., Goodman C. H., Bial J. J., Morton H. E. Quantitative relationship of Treponema denticola to severity of periodontal disease. Infect Immun. 1988 Apr;56(4):726–728. doi: 10.1128/iai.56.4.726-728.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Slots J., Genco R. J. Black-pigmented Bacteroides species, Capnocytophaga species, and Actinobacillus actinomycetemcomitans in human periodontal disease: virulence factors in colonization, survival, and tissue destruction. J Dent Res. 1984 Mar;63(3):412–421. doi: 10.1177/00220345840630031101. [DOI] [PubMed] [Google Scholar]
  29. Stock J. B., Lukat G. S., Stock A. M. Bacterial chemotaxis and the molecular logic of intracellular signal transduction networks. Annu Rev Biophys Biophys Chem. 1991;20:109–136. doi: 10.1146/annurev.bb.20.060191.000545. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES