Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Oct;65(10):4022–4029. doi: 10.1128/iai.65.10.4022-4029.1997

Complement factor C3 deposition and serum resistance in isogenic capsule and lipooligosaccharide sialic acid mutants of serogroup B Neisseria meningitidis.

U Vogel 1, A Weinberger 1, R Frank 1, A Müller 1, J Köhl 1, J P Atkinson 1, M Frosch 1
PMCID: PMC175578  PMID: 9317002

Abstract

Serogroup B meningococci express sialic acids on their surfaces as a modification of the lipooligosaccharide (LOS) and as capsular material consisting of alpha2,8-linked sialic acid homopolymers. The aim of this study was to elucidate the impact of each sialic acid component on the deposition of complement factor C3 and serum resistance. For this purpose, we used isogenic mutants deficient in capsule expression (a polysialyltransferase mutant) or sialylation of the LOS (a galE mutant) or both (a mutant with a deletion of the cps gene locus). Bactericidal assays using 40% normal human serum (NHS) demonstrated that both the capsule and LOS sialic acid are indispensable for serum resistance. By immunoblotting with monoclonal antibody MAb755 that is specific for the C3 alpha-chain, we were able to demonstrate that C3 from 40% NHS was covalently linked to the surface structures of meningococci as C3b and iC3b, irrespective of the surface sialic acid compounds. However, C3b linkage was more pronounced and occurred on a larger number of target molecules in galE mutants with nonsialylated LOS than in meningococci with wild-type LOS, irrespective of the capsule phenotype. C3b deposition was caused by both the classical pathway (CP) and the alternative pathway of complement activation. Use of 10% NHS revealed that at low serum concentrations, C3 deposition occurred via the CP and was detected primarily on nonsialylated-LOS galE mutants, irrespective of the capsular phenotype. Accordingly, immunoglobulin M (IgM) binding to meningococci from heat-inactivated NHS was demonstrated only in both encapsulated and unencapsulated galE mutants. In contrast, inhibition of IgA binding required both encapsulation and LOS sialylation. We conclude that serum resistance in wild-type serogroup B meningococci can only be partly explained by an alteration of the C3b linkage pattern, which seems to depend primarily on the presence of wild-type LOS, since a serum-resistant phenotype also requires capsule expression.

Full Text

The Full Text of this article is available as a PDF (931.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bishof N. A., Welch T. R., Beischel L. S. C4B deficiency: a risk factor for bacteremia with encapsulated organisms. J Infect Dis. 1990 Jul;162(1):248–250. doi: 10.1093/infdis/162.1.248. [DOI] [PubMed] [Google Scholar]
  2. Blaser M. J., Smith P. F., Repine J. E., Joiner K. A. Pathogenesis of Campylobacter fetus infections. Failure of encapsulated Campylobacter fetus to bind C3b explains serum and phagocytosis resistance. J Clin Invest. 1988 May;81(5):1434–1444. doi: 10.1172/JCI113474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brandtzaeg P., Høgåsen K., Kierulf P., Mollnes T. E. The excessive complement activation in fulminant meningococcal septicemia is predominantly caused by alternative pathway activation. J Infect Dis. 1996 Mar;173(3):647–655. doi: 10.1093/infdis/173.3.647. [DOI] [PubMed] [Google Scholar]
  4. Campbell J. R., Baker C. J., Edwards M. S. Deposition and degradation of C3 on type III group B streptococci. Infect Immun. 1991 Jun;59(6):1978–1983. doi: 10.1128/iai.59.6.1978-1983.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Croize J., Arvieux J., Berche P., Colomb M. G. Activation of the human complement alternative pathway by Listeria monocytogenes: evidence for direct binding and proteolysis of the C3 component on bacteria. Infect Immun. 1993 Dec;61(12):5134–5139. doi: 10.1128/iai.61.12.5134-5139.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elkins C., Carbonetti N. H., Varela V. A., Stirewalt D., Klapper D. G., Sparling P. F. Antibodies to N-terminal peptides of gonococcal porin are bactericidal when gonococcal lipopolysaccharide is not sialylated. Mol Microbiol. 1992 Sep;6(18):2617–2628. doi: 10.1111/j.1365-2958.1992.tb01439.x. [DOI] [PubMed] [Google Scholar]
  7. Figueroa J., Andreoni J., Densen P. Complement deficiency states and meningococcal disease. Immunol Res. 1993;12(3):295–311. doi: 10.1007/BF02918259. [DOI] [PubMed] [Google Scholar]
  8. Fitzgerald T. J. Activation of the classical and alternative pathways of complement by Treponema pallidum subsp. pallidum and Treponema vincentii. Infect Immun. 1987 Sep;55(9):2066–2073. doi: 10.1128/iai.55.9.2066-2073.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frank R., Overwin H. SPOT synthesis. Epitope analysis with arrays of synthetic peptides prepared on cellulose membranes. Methods Mol Biol. 1996;66:149–169. doi: 10.1385/0-89603-375-9:149. [DOI] [PubMed] [Google Scholar]
  10. Frosch M., Weisgerber C., Meyer T. F. Molecular characterization and expression in Escherichia coli of the gene complex encoding the polysaccharide capsule of Neisseria meningitidis group B. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1669–1673. doi: 10.1073/pnas.86.5.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gill M. J., McQuillen D. P., van Putten J. P., Wetzler L. M., Bramley J., Crooke H., Parsons N. J., Cole J. A., Smith H. Functional characterization of a sialyltransferase-deficient mutant of Neisseria gonorrhoeae. Infect Immun. 1996 Aug;64(8):3374–3378. doi: 10.1128/iai.64.8.3374-3378.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gordon D. L., Rice J., Finlay-Jones J. J., McDonald P. J., Hostetter M. K. Analysis of C3 deposition and degradation on bacterial surfaces after opsonization. J Infect Dis. 1988 Apr;157(4):697–704. doi: 10.1093/infdis/157.4.697. [DOI] [PubMed] [Google Scholar]
  13. Hamadeh R. M., Estabrook M. M., Zhou P., Jarvis G. A., Griffiss J. M. Anti-Gal binds to pili of Neisseria meningitidis: the immunoglobulin A isotype blocks complement-mediated killing. Infect Immun. 1995 Dec;63(12):4900–4906. doi: 10.1128/iai.63.12.4900-4906.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hammerschmidt S., Birkholz C., Zähringer U., Robertson B. D., van Putten J., Ebeling O., Frosch M. Contribution of genes from the capsule gene complex (cps) to lipooligosaccharide biosynthesis and serum resistance in Neisseria meningitidis. Mol Microbiol. 1994 Mar;11(5):885–896. doi: 10.1111/j.1365-2958.1994.tb00367.x. [DOI] [PubMed] [Google Scholar]
  15. Hammerschmidt S., Hilse R., van Putten J. P., Gerardy-Schahn R., Unkmeir A., Frosch M. Modulation of cell surface sialic acid expression in Neisseria meningitidis via a transposable genetic element. EMBO J. 1996 Jan 2;15(1):192–198. [PMC free article] [PubMed] [Google Scholar]
  16. Horstmann R. D. Target recognition failure by the nonspecific defense system: surface constituents of pathogens interfere with the alternative pathway of complement activation. Infect Immun. 1992 Mar;60(3):721–727. doi: 10.1128/iai.60.3.721-727.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jarvis G. A. Analysis of C3 deposition and degradation on Neisseria meningitidis and Neisseria gonorrhoeae. Infect Immun. 1994 May;62(5):1755–1760. doi: 10.1128/iai.62.5.1755-1760.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jarvis G. A., Griffiss J. M. Human IgA1 initiates complement-mediated killing of Neisseria meningitidis. J Immunol. 1989 Sep 1;143(5):1703–1709. [PubMed] [Google Scholar]
  19. Jarvis G. A. Recognition and control of neisserial infection by antibody and complement. Trends Microbiol. 1995 May;3(5):198–201. doi: 10.1016/s0966-842x(00)88921-0. [DOI] [PubMed] [Google Scholar]
  20. Jarvis G. A., Vedros N. A. Sialic acid of group B Neisseria meningitidis regulates alternative complement pathway activation. Infect Immun. 1987 Jan;55(1):174–180. doi: 10.1128/iai.55.1.174-180.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Joiner K. A. Complement evasion by bacteria and parasites. Annu Rev Microbiol. 1988;42:201–230. doi: 10.1146/annurev.mi.42.100188.001221. [DOI] [PubMed] [Google Scholar]
  22. Joiner K. A., Warren K. A., Hammer C., Frank M. M. Bactericidal but not nonbactericidal C5b-9 is associated with distinctive outer membrane proteins in Neisseria gonorrhoeae. J Immunol. 1985 Mar;134(3):1920–1925. [PubMed] [Google Scholar]
  23. Kim J. J., Zhou D., Mandrell R. E., Griffiss J. M. Effect of exogenous sialylation of the lipooligosaccharide of Neisseria gonorrhoeae on opsonophagocytosis. Infect Immun. 1992 Oct;60(10):4439–4442. doi: 10.1128/iai.60.10.4439-4442.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Klein N. J., Ison C. A., Peakman M., Levin M., Hammerschmidt S., Frosch M., Heyderman R. S. The influence of capsulation and lipooligosaccharide structure on neutrophil adhesion molecule expression and endothelial injury by Neisseria meningitidis. J Infect Dis. 1996 Jan;173(1):172–179. doi: 10.1093/infdis/173.1.172. [DOI] [PubMed] [Google Scholar]
  25. Klos A., Ihrig V., Messner M., Grabbe J., Bitter-Suermann D. Detection of native human complement components C3 and C5 and their primary activation peptides C3a and C5a (anaphylatoxic peptides) by ELISAs with monoclonal antibodies. J Immunol Methods. 1988 Jul 22;111(2):241–252. doi: 10.1016/0022-1759(88)90133-0. [DOI] [PubMed] [Google Scholar]
  26. Kozel T. R. Activation of the complement system by pathogenic fungi. Clin Microbiol Rev. 1996 Jan;9(1):34–46. doi: 10.1128/cmr.9.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lee F. K., Stephens D. S., Gibson B. W., Engstrom J. J., Zhou D., Apicella M. A. Microheterogeneity of Neisseria lipooligosaccharide: analysis of a UDP-glucose 4-epimerase mutant of Neisseria meningitidis NMB. Infect Immun. 1995 Jul;63(7):2508–2515. doi: 10.1128/iai.63.7.2508-2515.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Levy N. J., Kasper D. L. Surface-bound capsular polysaccharide of type Ia group B Streptococcus mediates C1 binding and activation of the classic complement pathway. J Immunol. 1986 Jun 1;136(11):4157–4162. [PubMed] [Google Scholar]
  29. Mandrell R. E., Apicella M. A. Lipo-oligosaccharides (LOS) of mucosal pathogens: molecular mimicry and host-modification of LOS. Immunobiology. 1993 Apr;187(3-5):382–402. doi: 10.1016/S0171-2985(11)80352-9. [DOI] [PubMed] [Google Scholar]
  30. Mandrell R. E., Kim J. J., John C. M., Gibson B. W., Sugai J. V., Apicella M. A., Griffiss J. M., Yamasaki R. Endogenous sialylation of the lipooligosaccharides of Neisseria meningitidis. J Bacteriol. 1991 May;173(9):2823–2832. doi: 10.1128/jb.173.9.2823-2832.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Marques M. B., Kasper D. L., Pangburn M. K., Wessels M. R. Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci. Infect Immun. 1992 Oct;60(10):3986–3993. doi: 10.1128/iai.60.10.3986-3993.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Masson L., Holbein B. E. Influence of nutrient limitation and low pH on serogroup B Neisseria meningitidis capsular polysaccharide levels: correlation with virulence for mice. Infect Immun. 1985 Feb;47(2):465–471. doi: 10.1128/iai.47.2.465-471.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moran E. E., Brandt B. L., Zollinger W. D. Expression of the L8 lipopolysaccharide determinant increases the sensitivity of Neisseria meningitidis to serum bactericidal activity. Infect Immun. 1994 Dec;62(12):5290–5295. doi: 10.1128/iai.62.12.5290-5295.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Parsons N. J., Andrade J. R., Patel P. V., Cole J. A., Smith H. Sialylation of lipopolysaccharide and loss of absorption of bactericidal antibody during conversion of gonococci to serum resistance by cytidine 5'-monophospho-N-acetyl neuraminic acid. Microb Pathog. 1989 Jul;7(1):63–72. doi: 10.1016/0882-4010(89)90112-5. [DOI] [PubMed] [Google Scholar]
  35. Platonov A. E., Beloborodov V. B., Pavlova L. I., Vershinina I. V., Käyhty H. Vaccination of patients deficient in a late complement component with tetravalent meningococcal capsular polysaccharide vaccine. Clin Exp Immunol. 1995 Apr;100(1):32–39. doi: 10.1111/j.1365-2249.1995.tb03600.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pluschke G., Achtman M. Degree of antibody-independent activation of the classical complement pathway by K1 Escherichia coli differs with O antigen type and correlates with virulence of meningitis in newborns. Infect Immun. 1984 Feb;43(2):684–692. doi: 10.1128/iai.43.2.684-692.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pluschke G., Mayden J., Achtman M., Levine R. P. Role of the capsule and the O antigen in resistance of O18:K1 Escherichia coli to complement-mediated killing. Infect Immun. 1983 Dec;42(3):907–913. doi: 10.1128/iai.42.3.907-913.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rest R. F., Frangipane J. V. Growth of Neisseria gonorrhoeae in CMP-N-acetylneuraminic acid inhibits nonopsonic (opacity-associated outer membrane protein-mediated) interactions with human neutrophils. Infect Immun. 1992 Mar;60(3):989–997. doi: 10.1128/iai.60.3.989-997.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Robertson B. D., Frosch M., van Putten J. P. The role of galE in the biosynthesis and function of gonococcal lipopolysaccharide. Mol Microbiol. 1993 May;8(5):891–901. doi: 10.1111/j.1365-2958.1993.tb01635.x. [DOI] [PubMed] [Google Scholar]
  40. Ross S. C., Rosenthal P. J., Berberich H. M., Densen P. Killing of Neisseria meningitidis by human neutrophils: implications for normal and complement-deficient individuals. J Infect Dis. 1987 Jun;155(6):1266–1275. doi: 10.1093/infdis/155.6.1266. [DOI] [PubMed] [Google Scholar]
  41. Smith H., Parsons N. J., Cole J. A. Sialylation of neisserial lipopolysaccharide: a major influence on pathogenicity. Microb Pathog. 1995 Dec;19(6):365–377. doi: 10.1006/mpat.1995.0071. [DOI] [PubMed] [Google Scholar]
  42. Stimson E., Virji M., Makepeace K., Dell A., Morris H. R., Payne G., Saunders J. R., Jennings M. P., Barker S., Panico M. Meningococcal pilin: a glycoprotein substituted with digalactosyl 2,4-diacetamido-2,4,6-trideoxyhexose. Mol Microbiol. 1995 Sep;17(6):1201–1214. doi: 10.1111/j.1365-2958.1995.mmi_17061201.x. [DOI] [PubMed] [Google Scholar]
  43. Vogel U., Hammerschmidt S., Frosch M. Sialic acids of both the capsule and the sialylated lipooligosaccharide of Neisseria meningitis serogroup B are prerequisites for virulence of meningococci in the infant rat. Med Microbiol Immunol. 1996 Sep;185(2):81–87. doi: 10.1007/s004300050018. [DOI] [PubMed] [Google Scholar]
  44. de la Paz H., Cooke S. J., Heckels J. E. Effect of sialylation of lipopolysaccharide of Neisseria gonorrhoeae on recognition and complement-mediated killing by monoclonal antibodies directed against different outer-membrane antigens. Microbiology. 1995 Apr;141(Pt 4):913–920. doi: 10.1099/13500872-141-4-913. [DOI] [PubMed] [Google Scholar]
  45. van Emmerik L. C., Kuijper E. J., Fijen C. A., Dankert J., Thiel S. Binding of mannan-binding protein to various bacterial pathogens of meningitis. Clin Exp Immunol. 1994 Sep;97(3):411–416. doi: 10.1111/j.1365-2249.1994.tb06103.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES