Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Oct;65(10):4114–4121. doi: 10.1128/iai.65.10.4114-4121.1997

Secretion of the C3 component of complement by peritoneal cells cultured with encapsulated Cryptococcus neoformans.

R Blackstock 1, J W Murphy 1
PMCID: PMC175592  PMID: 9317016

Abstract

Two isolates of Cryptococcus neoformans were identified as being widely divergent in pathogenic potential after intratracheal infection of mice. These isolates differed in their ability to upregulate capsule synthesis when grown under tissue culture conditions, and this property correlated with virulence. We postulated that differential capsule synthesis may cause differential stimulation of macrophages to produce products such as complement components. To test this hypothesis, heat-killed yeast cells were incubated with normal mouse peritoneal cells (PC) before the level of C3 secreted was determined. Cryptococcal stimulants were grown on mycological agar, which does not promote capsule synthesis, or in RPMI 1640 at 37 degrees C in an atmosphere of 5% CO2, which stimulates capsule synthesis, to determine the role that the capsule plays in the induction of C3 secretion. C3 levels were elevated in cultures containing cryptococci grown in RPMI 1640 at 37 degrees C in an atmosphere of 5% CO2, and the level of C3 detected was correlated with the amount of capsule expressed by the yeast cell stimulant. Nonencapsulated mutants of C. neoformans did not stimulate C3 secretion. Purified capsular polysaccharide (glucuronoxylomannan [GXM]) also stimulated the PC to secrete C3. Two signals were required before GXM stimulated C3 secretion. The second signal was identified as endotoxin present in small amounts (0.06 ng per ml) in tissue medium. Endotoxin may provide a priming stimulus for PC to express receptors or other cytokines needed for effective stimulation of C3. These experiments show that enhancement of C3 secretion by C. neoformans is due to GXM and is correlated with the virulence of the cryptococcal isolate.

Full Text

The Full Text of this article is available as a PDF (682.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andoh A., Fujiyama Y., Kitoh K., Niwakawa M., Hodohara K., Bamba T., Hosoda S. Macrophage colony-stimulating factor (M-CSF) enhances complement component C3 production by human monocytes/macrophages. Int J Hematol. 1993 Jan;57(1):53–59. [PubMed] [Google Scholar]
  2. Blackstock R. Cryptococcal capsular polysaccharide utilizes an antigen-presenting cell to induce a T-suppressor cell to secrete TsF. J Med Vet Mycol. 1996 Jan-Feb;34(1):19–30. doi: 10.1080/02681219680000041. [DOI] [PubMed] [Google Scholar]
  3. Blackstock R., McCormack J. M., Hall N. K. Induction of a macrophage-suppressive lymphokine by soluble cryptococcal antigens and its association with models of immunologic tolerance. Infect Immun. 1987 Jan;55(1):233–239. doi: 10.1128/iai.55.1.233-239.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blackstock R., Zembala M., Asherson G. L. Functional equivalence of cryptococcal and haptene-specific T suppressor factor (TsF). I. Picryl and oxazolone-specific TsF, which inhibit transfer of contact sensitivity, also inhibit phagocytosis by a subset of macrophages. Cell Immunol. 1991 Sep;136(2):435–447. doi: 10.1016/0008-8749(91)90365-i. [DOI] [PubMed] [Google Scholar]
  5. Blackstock R., Zembala M., Asherson G. L. Functional equivalence of cryptococcal and haptene-specific T suppressor factor (TsF). II. Monoclonal anti-cryptococcal TsF inhibits both phagocytosis by a subset of macrophages and transfer of contact sensitivity. Cell Immunol. 1991 Sep;136(2):448–461. doi: 10.1016/0008-8749(91)90366-j. [DOI] [PubMed] [Google Scholar]
  6. Bulmer G. S., Sans M. D. Cryptococcus neoformans. 3. Inhibition of phagocytosis. J Bacteriol. 1968 Jan;95(1):5–8. doi: 10.1128/jb.95.1.5-8.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bulmer G. S., Sans M. D., Gunn C. M. Cryptococcus neoformans. I. Nonencapsulated mutants. J Bacteriol. 1967 Nov;94(5):1475–1479. doi: 10.1128/jb.94.5.1475-1479.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cavaillon J. M., Haeffner-Cavaillon N. Polymyxin-B inhibition of LPS-induced interleukin-1 secretion by human monocytes is dependent upon the LPS origin. Mol Immunol. 1986 Sep;23(9):965–969. doi: 10.1016/0161-5890(86)90127-6. [DOI] [PubMed] [Google Scholar]
  9. Chaturvedi V., Wong B., Newman S. L. Oxidative killing of Cryptococcus neoformans by human neutrophils. Evidence that fungal mannitol protects by scavenging reactive oxygen intermediates. J Immunol. 1996 May 15;156(10):3836–3840. [PubMed] [Google Scholar]
  10. Cherniak R., Sundstrom J. B. Polysaccharide antigens of the capsule of Cryptococcus neoformans. Infect Immun. 1994 May;62(5):1507–1512. doi: 10.1128/iai.62.5.1507-1512.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Colten H. R., Strunk R. C., Perlmutter D. H., Cole F. S. Regulation of complement protein biosynthesis in mononuclear phagocytes. Ciba Found Symp. 1986;118:141–154. doi: 10.1002/9780470720998.ch10. [DOI] [PubMed] [Google Scholar]
  12. Curtis J. L., Huffnagle G. B., Chen G. H., Warnock M. L., Gyetko M. R., McDonald R. A., Scott P. J., Toews G. B. Experimental murine pulmonary cryptococcosis. Differences in pulmonary inflammation and lymphocyte recruitment induced by two encapsulated strains of Cryptococcus neoformans. Lab Invest. 1994 Jul;71(1):113–126. [PubMed] [Google Scholar]
  13. Dong Z. M., Murphy J. W. Cryptococcal polysaccharides induce L-selectin shedding and tumor necrosis factor receptor loss from the surface of human neutrophils. J Clin Invest. 1996 Feb 1;97(3):689–698. doi: 10.1172/JCI118466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dykstra M. A., Friedman L., Murphy J. W. Capsule size of Cryptococcus neoformans: control and relationship to virulence. Infect Immun. 1977 Apr;16(1):129–135. doi: 10.1128/iai.16.1.129-135.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Erdei A., Köhler V., Schäfer H., Burger R. Macrophage-bound C3 fragments as adhesion molecules modulate presentation of exogenous antigens. Immunobiology. 1992 Aug;185(2-4):314–326. doi: 10.1016/S0171-2985(11)80649-2. [DOI] [PubMed] [Google Scholar]
  16. Goodrum K. J. Stimulation of complement component C3 synthesis in macrophagelike cell lines by group B streptococci. Infect Immun. 1987 May;55(5):1101–1105. doi: 10.1128/iai.55.5.1101-1105.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Granger D. L., Perfect J. R., Durack D. T. Virulence of Cryptococcus neoformans. Regulation of capsule synthesis by carbon dioxide. J Clin Invest. 1985 Aug;76(2):508–516. doi: 10.1172/JCI112000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Huffnagle G. B., Toews G. B., Burdick M. D., Boyd M. B., McAllister K. S., McDonald R. A., Kunkel S. L., Strieter R. M. Afferent phase production of TNF-alpha is required for the development of protective T cell immunity to Cryptococcus neoformans. J Immunol. 1996 Nov 15;157(10):4529–4536. [PubMed] [Google Scholar]
  19. Høgåsen A. K., Abrahamsen T. G., Gaustad P. Various Candida and Torulopsis species differ in their ability to induce the production of C3, factor B and granulocyte-macrophage colony-stimulating factor (GM-CSF) in human monocyte cultures. J Med Microbiol. 1995 Apr;42(4):291–298. doi: 10.1099/00222615-42-4-291. [DOI] [PubMed] [Google Scholar]
  20. Høgåsen A. K., Abrahamsen T. G. Increased C3 production in human monocytes after stimulation with Candida albicans is suppressed by granulocyte-macrophage colony-stimulating factor. Infect Immun. 1993 May;61(5):1779–1785. doi: 10.1128/iai.61.5.1779-1785.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Høgåsen A. K., Abrahamsen T. G. Polymyxin B stimulates production of complement components and cytokines in human monocytes. Antimicrob Agents Chemother. 1995 Feb;39(2):529–532. doi: 10.1128/aac.39.2.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kozel T. R., Cazin J. Nonencapsulated Variant of Cryptococcus neoformans I. Virulence Studies and Characterization of Soluble Polysaccharide. Infect Immun. 1971 Feb;3(2):287–294. doi: 10.1128/iai.3.2.287-294.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kozel T. R., Wilson M. A., Murphy J. W. Early events in initiation of alternative complement pathway activation by the capsule of Cryptococcus neoformans. Infect Immun. 1991 Sep;59(9):3101–3110. doi: 10.1128/iai.59.9.3101-3110.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kozel T. R., Wilson M. A., Pfrommer G. S., Schlageter A. M. Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins. Infect Immun. 1989 Jul;57(7):1922–1927. doi: 10.1128/iai.57.7.1922-1927.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kwon-Chung K. J., Bennett J. E. Epidemiologic differences between the two varieties of Cryptococcus neoformans. Am J Epidemiol. 1984 Jul;120(1):123–130. doi: 10.1093/oxfordjournals.aje.a113861. [DOI] [PubMed] [Google Scholar]
  26. Mitchell T. G., Friedman L. In vitro phagocytosis and intracellular fate of variously encapsulated strains of Cryptococcus neoformans. Infect Immun. 1972 Apr;5(4):491–498. doi: 10.1128/iai.5.4.491-498.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Morgan E. L., Weigle W. O., Erickson B. W., Fok K. F., Hugli T. E. Suppression of humoral immune responses by synthetic C3a peptides. J Immunol. 1983 Nov;131(5):2258–2261. [PubMed] [Google Scholar]
  28. Nowak T. P., Barondes S. H. Agglutinin from Limulus polyphemus. Purification with formalinized horse erythrocytes as the affinity adsorbent. Biochim Biophys Acta. 1975 May 30;393(1):115–123. [PubMed] [Google Scholar]
  29. Pettoello-Mantovani M., Casadevall A., Kollmann T. R., Rubinstein A., Goldstein H. Enhancement of HIV-1 infection by the capsular polysaccharide of Cryptococcus neoformans. Lancet. 1992 Jan 4;339(8784):21–23. doi: 10.1016/0140-6736(92)90142-p. [DOI] [PubMed] [Google Scholar]
  30. Polacheck I., Lebens G., Hicks J. B. Development of DNA probes for early diagnosis and epidemiological study of cryptococcosis in AIDS patients. J Clin Microbiol. 1992 Apr;30(4):925–930. doi: 10.1128/jcm.30.4.925-930.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ramadori G., Van Damme J., Rieder H., Meyer zum Büschenfelde K. H. Interleukin 6, the third mediator of acute-phase reaction, modulates hepatic protein synthesis in human and mouse. Comparison with interleukin 1 beta and tumor necrosis factor-alpha. Eur J Immunol. 1988 Aug;18(8):1259–1264. doi: 10.1002/eji.1830180817. [DOI] [PubMed] [Google Scholar]
  32. Retini C., Vecchiarelli A., Monari C., Tascini C., Bistoni F., Kozel T. R. Capsular polysaccharide of Cryptococcus neoformans induces proinflammatory cytokine release by human neutrophils. Infect Immun. 1996 Aug;64(8):2897–2903. doi: 10.1128/iai.64.8.2897-2903.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rhodes J. C. Contribution of complement component C5 to the pathogenesis of experimental murine cryptococcosis. Sabouraudia. 1985 Jun;23(3):225–234. doi: 10.1080/00362178585380331. [DOI] [PubMed] [Google Scholar]
  34. Rhodes J. C., Polacheck I., Kwon-Chung K. J. Phenoloxidase activity and virulence in isogenic strains of Cryptococcus neoformans. Infect Immun. 1982 Jun;36(3):1175–1184. doi: 10.1128/iai.36.3.1175-1184.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Robbins R. A., Russ W. D., Thomas K. R., Rasmussen J. K., Kay H. D. Complement component C5 is required for release of alveolar macrophage-derived neutrophil chemotactic activity. Am Rev Respir Dis. 1987 Mar;135(3):659–664. doi: 10.1164/arrd.1987.135.3.659. [DOI] [PubMed] [Google Scholar]
  36. Rothman B. L., Merrow M., Despins A., Kennedy T., Kreutzer D. L. Effect of lipopolysaccharide on C3 and C5 production by human lung cells. J Immunol. 1989 Jul 1;143(1):196–202. [PubMed] [Google Scholar]
  37. Ruiz A., Fromtling R. A., Bulmer G. S. Distribution of Cryptococcus neoformans in a natural site. Infect Immun. 1981 Feb;31(2):560–563. doi: 10.1128/iai.31.2.560-563.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shimizu H., Sakano T., Fujie A., Nishimura S., Ueda K. Modulation of C2 and C3 gene expression of human peripheral blood monocytes by interleukin 1 beta, interferon gamma, tumor necrosis factor alpha and lipopolysaccharide. Experientia. 1992 Dec 1;48(11-12):1148–1150. doi: 10.1007/BF01948011. [DOI] [PubMed] [Google Scholar]
  39. Swenson F. J., Kozel T. R. Phagocytosis of Cryptococcus neoformans by normal and thioglycolate-activated macrophages. Infect Immun. 1978 Sep;21(3):714–720. doi: 10.1128/iai.21.3.714-720.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Takabayashi T., Vannier E., Clark B. D., Margolis N. H., Dinarello C. A., Burke J. F., Gelfand J. A. A new biologic role for C3a and C3a desArg: regulation of TNF-alpha and IL-1 beta synthesis. J Immunol. 1996 May 1;156(9):3455–3460. [PubMed] [Google Scholar]
  41. Tripp C., Ruiz A., Bulmer G. S. Culture of Cryptococcus neoformans in the nonencapsulated state. Mycopathologia. 1981 Dec 11;76(3):129–131. doi: 10.1007/BF00437192. [DOI] [PubMed] [Google Scholar]
  42. Tsuji R. F., Kikuchi M., Askenase P. W. Possible involvement of C5/C5a in the efferent and elicitation phases of contact sensitivity. J Immunol. 1996 Jun 15;156(12):4444–4450. [PubMed] [Google Scholar]
  43. Vecchiarelli A., Retini C., Monari C., Tascini C., Bistoni F., Kozel T. R. Purified capsular polysaccharide of Cryptococcus neoformans induces interleukin-10 secretion by human monocytes. Infect Immun. 1996 Jul;64(7):2846–2849. doi: 10.1128/iai.64.7.2846-2849.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wang Y., Aisen P., Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun. 1995 Aug;63(8):3131–3136. doi: 10.1128/iai.63.8.3131-3136.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Wong B., Perfect J. R., Beggs S., Wright K. A. Production of the hexitol D-mannitol by Cryptococcus neoformans in vitro and in rabbits with experimental meningitis. Infect Immun. 1990 Jun;58(6):1664–1670. doi: 10.1128/iai.58.6.1664-1670.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES