Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Oct;65(10):4130–4134. doi: 10.1128/iai.65.10.4130-4134.1997

Clostridium septicum alpha-toxin is proteolytically activated by furin.

V M Gordon 1, R Benz 1, K Fujii 1, S H Leppla 1, R K Tweten 1
PMCID: PMC175594  PMID: 9317018

Abstract

Clostridium septicum alpha-toxin is secreted as an inactive 46,450-Da protoxin. The protoxin is activated by proteolytic cleavage near the C terminus, which eventually causes the release of a 45-amino-acid fragment. Proteoytic activation and loss of the propeptide allow alpha-toxin to oligomerize and form pores on the plasma membrane, which results in colloidal-osmotic lysis. Activation may be accomplished in vitro by cleavage with trypsin at Arg367 (J. Ballard, Y. Sokolov, W. L. Yuan, B. L. Kagan, and R. K. Tweten, Mol. Microbiol. 10:627-634, 1993), which is located within the sequence KKRRGKR367S. A conspicuous feature of this site is a recognition site (RGKR) for the eukaryotic protease furin. Pro-alpha-toxin (AT[pro]) that was digested with trypsin or recombinant soluble furin yielded the 41,327-Da active form (AT[act]). A mutated alpha-toxin in which the furin consensus site was altered to KKRSGSRS at the cleavage site (AT[SGSR]) was cleaved and activated by trypsin but not by furin. In cytotoxicity assays, wild-type Chinese hamster ovary (CHO) and furin-deficient CHO (FD11) cells were killed by AT(pro) but not by AT(SGSR). Both cell types were killed by AT(SGSR) that was preactivated with trypsin. Propidium iodide uptake assays revealed that FD11 cells were approximately 22% less sensitive to AT(pro) than were CHO cells. AT(pro)-induced cell lysis of FD11 cells, assessed by propidium iodide uptake, was partially prevented by leupeptin (5 mM) and completely prevented by antipain (2.5 mM). The inhibition by antipain suggested the presence of cysteine or serine proteases that could also activate AT(pro). These findings demonstrate that furin is involved in the activation of C. septicum alpha-toxin on the cell surface but that alternate eukaryotic proteases can also activate the toxin. Regardless of the activating protease, the furin consensus site appears to be essential for the activation of alpha-toxin on the cell surface.

Full Text

The Full Text of this article is available as a PDF (666.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allured V. S., Collier R. J., Carroll S. F., McKay D. B. Structure of exotoxin A of Pseudomonas aeruginosa at 3.0-Angstrom resolution. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1320–1324. doi: 10.1073/pnas.83.5.1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ballard J., Bryant A., Stevens D., Tweten R. K. Purification and characterization of the lethal toxin (alpha-toxin) of Clostridium septicum. Infect Immun. 1992 Mar;60(3):784–790. doi: 10.1128/iai.60.3.784-790.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballard J., Crabtree J., Roe B. A., Tweten R. K. The primary structure of Clostridium septicum alpha-toxin exhibits similarity with that of Aeromonas hydrophila aerolysin. Infect Immun. 1995 Jan;63(1):340–344. doi: 10.1128/iai.63.1.340-344.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ballard J., Sokolov Y., Yuan W. L., Kagan B. L., Tweten R. K. Activation and mechanism of Clostridium septicum alpha toxin. Mol Microbiol. 1993 Nov;10(3):627–634. doi: 10.1111/j.1365-2958.1993.tb00934.x. [DOI] [PubMed] [Google Scholar]
  5. Barr P. J. Mammalian subtilisins: the long-sought dibasic processing endoproteases. Cell. 1991 Jul 12;66(1):1–3. doi: 10.1016/0092-8674(91)90129-m. [DOI] [PubMed] [Google Scholar]
  6. Bosshart H., Humphrey J., Deignan E., Davidson J., Drazba J., Yuan L., Oorschot V., Peters P. J., Bonifacino J. S. The cytoplasmic domain mediates localization of furin to the trans-Golgi network en route to the endosomal/lysosomal system. J Cell Biol. 1994 Sep;126(5):1157–1172. doi: 10.1083/jcb.126.5.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garred O., van Deurs B., Sandvig K. Furin-induced cleavage and activation of Shiga toxin. J Biol Chem. 1995 May 5;270(18):10817–10821. doi: 10.1074/jbc.270.18.10817. [DOI] [PubMed] [Google Scholar]
  8. Gordon V. M., Klimpel K. R., Arora N., Henderson M. A., Leppla S. H. Proteolytic activation of bacterial toxins by eukaryotic cells is performed by furin and by additional cellular proteases. Infect Immun. 1995 Jan;63(1):82–87. doi: 10.1128/iai.63.1.82-87.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gordon V. M., Leppla S. H. Proteolytic activation of bacterial toxins: role of bacterial and host cell proteases. Infect Immun. 1994 Feb;62(2):333–340. doi: 10.1128/iai.62.2.333-340.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ho S. N., Hunt H. D., Horton R. M., Pullen J. K., Pease L. R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989 Apr 15;77(1):51–59. doi: 10.1016/0378-1119(89)90358-2. [DOI] [PubMed] [Google Scholar]
  11. Inocencio N. M., Moehring J. M., Moehring T. J. Furin activates Pseudomonas exotoxin A by specific cleavage in vivo and in vitro. J Biol Chem. 1994 Dec 16;269(50):31831–31835. [PubMed] [Google Scholar]
  12. Kantardjieff K., Collier R. J., Eisenberg D. X-ray grade crystals of the enzymatic fragment of diphtheria toxin. J Biol Chem. 1989 Jun 25;264(18):10402–10404. [PubMed] [Google Scholar]
  13. Kaufman R. J., Murtha P., Ingolia D. E., Yeung C. Y., Kellems R. E. Selection and amplification of heterologous genes encoding adenosine deaminase in mammalian cells. Proc Natl Acad Sci U S A. 1986 May;83(10):3136–3140. doi: 10.1073/pnas.83.10.3136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Keogh G., Unsworth I., Vowels M., Kern I. B. Spontaneous Clostridium septicum myonecrosis in congenital neutropaenia. Aust N Z J Surg. 1994 Aug;64(8):574–575. doi: 10.1111/j.1445-2197.1994.tb02291.x. [DOI] [PubMed] [Google Scholar]
  15. Klimpel K. R., Molloy S. S., Thomas G., Leppla S. H. Anthrax toxin protective antigen is activated by a cell surface protease with the sequence specificity and catalytic properties of furin. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10277–10281. doi: 10.1073/pnas.89.21.10277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lorimer J. W., Eidus L. B. Invasive Clostridium septicum infection in association with colorectal carcinoma. Can J Surg. 1994 Jun;37(3):245–249. [PubMed] [Google Scholar]
  17. Molloy S. S., Thomas L., VanSlyke J. K., Stenberg P. E., Thomas G. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 1994 Jan 1;13(1):18–33. doi: 10.1002/j.1460-2075.1994.tb06231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Parker M. W., Buckley J. T., Postma J. P., Tucker A. D., Leonard K., Pattus F., Tsernoglou D. Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states. Nature. 1994 Jan 20;367(6460):292–295. doi: 10.1038/367292a0. [DOI] [PubMed] [Google Scholar]
  19. Pigrau C., Ruiz M. P., Sagrista J. Purulent pericarditis due to Clostridium septicum associated with carcinoma of the colon. Clin Infect Dis. 1995 Jan;20(1):202–203. doi: 10.1093/clinids/20.1.202. [DOI] [PubMed] [Google Scholar]
  20. Sellman B. R., Kagan B. L., Tweten R. K. Generation of a membrane-bound, oligomerized pre-pore complex is necessary for pore formation by Clostridium septicum alpha toxin. Mol Microbiol. 1997 Feb;23(3):551–558. doi: 10.1046/j.1365-2958.1997.d01-1876.x. [DOI] [PubMed] [Google Scholar]
  21. Sellman B. R., Tweten R. K. The propeptide of Clostridium septicum alpha toxin functions as an intramolecular chaperone and is a potent inhibitor of alpha toxin-dependent cytolysis. Mol Microbiol. 1997 Aug;25(3):429–440. doi: 10.1046/j.1365-2958.1997.4541820.x. [DOI] [PubMed] [Google Scholar]
  22. Stevens D. L., Musher D. M., Watson D. A., Eddy H., Hamill R. J., Gyorkey F., Rosen H., Mader J. Spontaneous, nontraumatic gangrene due to Clostridium septicum. Rev Infect Dis. 1990 Mar-Apr;12(2):286–296. doi: 10.1093/clinids/12.2.286. [DOI] [PubMed] [Google Scholar]
  23. Stieneke-Gröber A., Vey M., Angliker H., Shaw E., Thomas G., Roberts C., Klenk H. D., Garten W. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin-like endoprotease. EMBO J. 1992 Jul;11(7):2407–2414. doi: 10.1002/j.1460-2075.1992.tb05305.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Tsuneoka M., Nakayama K., Hatsuzawa K., Komada M., Kitamura N., Mekada E. Evidence for involvement of furin in cleavage and activation of diphtheria toxin. J Biol Chem. 1993 Dec 15;268(35):26461–26465. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES