Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Oct;65(10):4152–4157. doi: 10.1128/iai.65.10.4152-4157.1997

Enhancement of neutrophil-mediated killing of Plasmodium falciparum asexual blood forms by fatty acids: importance of fatty acid structure.

L M Kumaratilake 1, A Ferrante 1, B S Robinson 1, T Jaeger 1, A Poulos 1
PMCID: PMC175597  PMID: 9317021

Abstract

Effects of fatty acids on human neutrophil-mediated killing of Plasmodium falciparum asexual blood forms were investigated by using a quantitative radiometric assay. The results showed that the antiparasitic activity of neutrophils can be greatly increased (>threefold) by short-term treatment with fatty acids with 20 to 24 carbon atoms and at least three double bonds. In particular, the n-3 polyenoic fatty acids, eicosapentaenoic and docosahexaenoic acids, and the n-6 fatty acid, arachidonic acid, significantly enhanced neutrophil antiparasitic activity. This effect was >1.5-fold higher than that induced by an optical concentration of the known agonist cytokine tumor necrosis factor alpha (TNF-alpha). At suboptimal concentrations, the combination of arachidonic acid and TNF-alpha caused a synergistic increase in neutrophil-mediated parasite killing. The fatty acid-induced effect was independent of the availability of serum opsonins but dependent on the structure of the fatty acids. The length of the carbon chain, degree of unsaturation, and availability of a free carboxyl group were important determinants of fatty acid activity. The fatty acids which increased neutrophil-mediated killing primed the enhanced superoxide radical generation of neutrophils in response to P. falciparum as detected by chemiluminescence. Scavengers of oxygen radicals significantly reduced the fatty acid-enhanced parasite killing, but cyclooxygenase and lipoxygenase inhibitors had no effect. These findings have identified a new class of immunoenhancers that could be exploited to increase resistance against Plasmodium species.

Full Text

The Full Text of this article is available as a PDF (551.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bates E. J., Ferrante A., Harvey D. P., Nandoskar M., Poulos A. Docosahexanoic acid (22:6, n-3) but not eicosapentaenoic acid (20:5, n-3) can induce neutrophil-mediated injury of cultured endothelial cells: involvement of neutrophil elastase. J Leukoc Biol. 1993 Dec;54(6):590–598. doi: 10.1002/jlb.54.6.590. [DOI] [PubMed] [Google Scholar]
  2. Blok W. L., Vogels M. T., Curfs J. H., Eling W. M., Buurman W. A., van der Meer J. W. Dietary fish-oil supplementation in experimental gram-negative infection and in cerebral malaria in mice. J Infect Dis. 1992 May;165(5):898–903. doi: 10.1093/infdis/165.5.898. [DOI] [PubMed] [Google Scholar]
  3. Calder P. C., Bond J. A., Harvey D. J., Gordon S., Newsholme E. A. Uptake and incorporation of saturated and unsaturated fatty acids into macrophage lipids and their effect upon macrophage adhesion and phagocytosis. Biochem J. 1990 Aug 1;269(3):807–814. doi: 10.1042/bj2690807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Celada A., Cruchaud A., Perrin L. H. Phagocytosis of Plasmodium falciparum-parasitized erythrocytes by human polymorphonuclear leukocytes. J Parasitol. 1983 Feb;69(1):49–53. [PubMed] [Google Scholar]
  5. Chuang T. H., Bohl B. P., Bokoch G. M. Biologically active lipids are regulators of Rac.GDI complexation. J Biol Chem. 1993 Dec 15;268(35):26206–26211. [PubMed] [Google Scholar]
  6. Engers H. D., Bergquist R., Modabber F. Progress on vaccines against parasites. Dev Biol Stand. 1996;87:73–84. [PubMed] [Google Scholar]
  7. Ferrante A., Thong Y. H. Separation of mononuclear and polymorphonuclear leucocytes from human blood by the one-step Hypaque-Ficoll method is dependent on blood column height. J Immunol Methods. 1982;48(1):81–85. doi: 10.1016/0022-1759(82)90212-5. [DOI] [PubMed] [Google Scholar]
  8. Fuortes M., Jin W. W., Nathan C. Beta 2 integrin-dependent tyrosine phosphorylation of paxillin in human neutrophils treated with tumor necrosis factor. J Cell Biol. 1994 Dec;127(5):1477–1483. doi: 10.1083/jcb.127.5.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. GODFREY D. G. Antiparasitic action of dietary cod liver oil upon Plasmodium berghei and its reversal by vitamin E. Exp Parasitol. 1957 Nov;6(6):555–565. doi: 10.1016/0014-4894(57)90038-3. [DOI] [PubMed] [Google Scholar]
  10. Hardy S. J., Ferrante A., Robinson B. S., Johnson D. W., Poulos A., Clark K. J., Murray A. W. In vitro activation of rat brain protein kinase C by polyenoic very-long-chain fatty acids. J Neurochem. 1994 Apr;62(4):1546–1551. doi: 10.1046/j.1471-4159.1994.62041546.x. [DOI] [PubMed] [Google Scholar]
  11. Hardy S. J., Robinson B. S., Ferrante A., Hii C. S., Johnson D. W., Poulos A., Murray A. W. Polyenoic very-long-chain fatty acids mobilize intracellular calcium from a thapsigargin-insensitive pool in human neutrophils. The relationship between Ca2+ mobilization and superoxide production induced by long- and very-long-chain fatty acids. Biochem J. 1995 Oct 15;311(Pt 2):689–697. doi: 10.1042/bj3110689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hardy S. J., Robinson B. S., Poulos A., Harvey D. P., Ferrante A., Murray A. W. The neutrophil respiratory burst. Responses to fatty acids, N-formylmethionylleucylphenylalanine and phorbol ester suggest divergent signalling mechanisms. Eur J Biochem. 1991 Jun 15;198(3):801–806. doi: 10.1111/j.1432-1033.1991.tb16084.x. [DOI] [PubMed] [Google Scholar]
  13. Hellberg C., Eierman D., Sjölander A., Andersson T. The Ca2+ signaling capacity of the beta 2-integrin on HL60-granulocytic cells is abrogated following phosphorylation of its CD18-chain: relation to impaired protein tyrosine phosphorylation. Exp Cell Res. 1995 Mar;217(1):140–148. doi: 10.1006/excr.1995.1073. [DOI] [PubMed] [Google Scholar]
  14. Hii C. S., Ferrante A., Edwards Y. S., Huang Z. H., Hartfield P. J., Rathjen D. A., Poulos A., Murray A. W. Activation of mitogen-activated protein kinase by arachidonic acid in rat liver epithelial WB cells by a protein kinase C-dependent mechanism. J Biol Chem. 1995 Mar 3;270(9):4201–4204. doi: 10.1074/jbc.270.9.4201. [DOI] [PubMed] [Google Scholar]
  15. Kumaratilake L. M., Ferrante A., Jaeger T., Rzepczyk C. M. Effects of cytokines, complement, and antibody on the neutrophil respiratory burst and phagocytic response to Plasmodium falciparum merozoites. Infect Immun. 1992 Sep;60(9):3731–3738. doi: 10.1128/iai.60.9.3731-3738.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kumaratilake L. M., Ferrante A., Rzepczyk C. M. Tumor necrosis factor enhances neutrophil-mediated killing of Plasmodium falciparum. Infect Immun. 1990 Mar;58(3):788–793. doi: 10.1128/iai.58.3.788-793.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kumaratilake L. M., Ferrante A., Rzepczyk C. The role of T lymphocytes in immunity to Plasmodium falciparum. Enhancement of neutrophil-mediated parasite killing by lymphotoxin and IFN-gamma: comparisons with tumor necrosis factor effects. J Immunol. 1991 Jan 15;146(2):762–767. [PubMed] [Google Scholar]
  18. Kumaratilake L. M., Robinson B. S., Ferrante A., Poulos A. Antimalarial properties of n-3 and n-6 polyunsaturated fatty acids: in vitro effects on Plasmodium falciparum and in vivo effects on P. berghei. J Clin Invest. 1992 Mar;89(3):961–967. doi: 10.1172/JCI115678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
  20. Levander O. A., Ager A. L., Jr, Morris V. C., May R. G. Plasmodium yoelii: comparative antimalarial activities of dietary fish oils and fish oil concentrates in vitamin E-deficient mice. Exp Parasitol. 1990 Apr;70(3):323–329. doi: 10.1016/0014-4894(90)90114-r. [DOI] [PubMed] [Google Scholar]
  21. MacPherson G. G., Warrell M. J., White N. J., Looareesuwan S., Warrell D. A. Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am J Pathol. 1985 Jun;119(3):385–401. [PMC free article] [PubMed] [Google Scholar]
  22. Pasvol G., Wilson R. J., Smalley M. E., Brown J. Separation of viable schizont-infected red cells of Plasmodium falciparum from human blood. Ann Trop Med Parasitol. 1978 Feb;72(1):87–88. doi: 10.1080/00034983.1978.11719283. [DOI] [PubMed] [Google Scholar]
  23. Pelletier A. J., Kunicki T., Ruggeri Z. M., Quaranta V. The activation state of the integrin alpha IIb beta 3 affects outside-in signals leading to cell spreading and focal adhesion kinase phosphorylation. J Biol Chem. 1995 Jul 28;270(30):18133–18140. doi: 10.1074/jbc.270.30.18133. [DOI] [PubMed] [Google Scholar]
  24. Postma N. S., Mommers E. C., Eling W. M., Zuidema J. Oxidative stress in malaria; implications for prevention and therapy. Pharm World Sci. 1996 Aug;18(4):121–129. doi: 10.1007/BF00717727. [DOI] [PubMed] [Google Scholar]
  25. Ridley A. J. Rho: theme and variations. Curr Biol. 1996 Oct 1;6(10):1256–1264. doi: 10.1016/s0960-9822(02)70711-2. [DOI] [PubMed] [Google Scholar]
  26. Robinson B. S., Johnson D. W., Ferrante A., Poulos A. Differences in the metabolism of eicosatetraenoic (20:4(n - 6)), tetracosatetraenoic (24:4(n - 6)) and triacontatetraenoic (30:4(n - 6)) acids in human neutrophils. Biochim Biophys Acta. 1994 Aug 4;1213(3):325–334. doi: 10.1016/0005-2760(94)00059-x. [DOI] [PubMed] [Google Scholar]
  27. Street J. M., Johnson D. W., Singh H., Poulos A. Metabolism of saturated and polyunsaturated fatty acids by normal and Zellweger syndrome skin fibroblasts. Biochem J. 1989 Jun 15;260(3):647–655. doi: 10.1042/bj2600647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sun T., Chakrabarti C. Schizonts, merozoites, and phagocytosis in falciparum malaria. Ann Clin Lab Sci. 1985 Nov-Dec;15(6):465–469. [PubMed] [Google Scholar]
  29. Trubowitz S., Masek B. Plasmodium falciparum: phagocytosis by polymorphonuclear leukocytes. Science. 1968 Oct 11;162(3850):273–274. doi: 10.1126/science.162.3850.273. [DOI] [PubMed] [Google Scholar]
  30. Wijkander J., O'Flaherty J. T., Nixon A. B., Wykle R. L. 5-Lipoxygenase products modulate the activity of the 85-kDa phospholipase A2 in human neutrophils. J Biol Chem. 1995 Nov 3;270(44):26543–26549. doi: 10.1074/jbc.270.44.26543. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES