Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Oct;65(10):4190–4198. doi: 10.1128/iai.65.10.4190-4198.1997

Allelic polymorphisms at the H-2A and HLA-DQ loci influence the response of murine lymphocytes to the Mycoplasma arthritidis superantigen MAM.

B C Cole 1, A D Sawitzke 1, E A Ahmed 1, C L Atkin 1, C S David 1
PMCID: PMC175602  PMID: 9317026

Abstract

Mycoplasma arthritidis, an agent of rodent arthritis, produces a potent superantigen (SAg), MAM. Previous work established that MAM is presented to T cells by murine H-2E or the homologous human HLA-DR molecules and that lymphocytes lacking a functional H-2E molecule fail to respond to MAM. Recently, more potent and purified preparations of MAM of known protein content have become available. This enabled us to more effectively compare the response of MAM with that of other SAgs by using lymphocytes from mice whose cells express different H-2A and HLA-DQ molecules. Here we demonstrate that cells from some H-2E-negative mouse strains respond to higher concentrations of MAM. By use of inbred, congenic, and recombinant mice, we show that these differences are, in fact, exercised at the level of the major histocompatibility complex (MHC) and that allelic polymorphisms at H-2A influence reactivity to MAM. In addition, polymorphisms at HLA-DQ, the human homolog of H-2A, also influence responsiveness to MAM. Cells expressing DQw6 (HLA-DQA1*0103 and DQBI*0601 chains) gave much higher responses to MAM than did cells expressing DQw8 (DQA1*0301 and DQB1*0302 chains). In fact, responses of lymphocytes expressing DQB1*0601 chains homozygously were as high as those observed for cells expressing a functional H-2E molecule. Murine lymphocytes responded less well to staphylococcal enterotoxin B (SEB) and SEA, but mouse cells expressing human MHC molecules gave much higher responses. The patterns of reactivity observed with cells expressing the various murine and human alleles differed for MAM, SEB, and SEA, suggesting that each of these SAgs interacts with different regions or residues on MHC molecules. It has been hypothesized that SAgs might play a role in susceptibility to autoimmune disease. Allelic polymorphisms at MHC loci might therefore influence susceptibility to autoimmune disease by affecting immunoreactivity to specific superantigens.

Full Text

The Full Text of this article is available as a PDF (246.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkin C. L., Cole B. C., Sullivan G. J., Washburn L. R., Wiley B. B. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. V. A small basic protein from culture supernatants is a potent T cell mitogen. J Immunol. 1986 Sep 1;137(5):1581–1589. [PubMed] [Google Scholar]
  2. Atkin C. L., Wei S., Cole B. C. The Mycoplasma arthritidis superantigen MAM: purification and identification of an active peptide. Infect Immun. 1994 Dec;62(12):5367–5375. doi: 10.1128/iai.62.12.5367-5375.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baccala R., Smith L. R., Vestberg M., Peterson P. A., Cole B. C., Theofilopoulos A. N. Mycoplasma arthritidis mitogen. V beta engaged in mice, rats, and humans, and requirement of HLA-DR alpha for presentation. Arthritis Rheum. 1992 Apr;35(4):434–442. doi: 10.1002/art.1780350413. [DOI] [PubMed] [Google Scholar]
  4. Bekoff M. C., Cole B. C., Grey H. M. Studies on the mechanism of stimulation of T cells by the Mycoplasma arthritidis-derived mitogen. Role of class II IE molecules. J Immunol. 1987 Nov 15;139(10):3189–3194. [PubMed] [Google Scholar]
  5. Bernatchez C., Al-Daccak R., Mayer P. E., Mehindate K., Rink L., Mecheri S., Mourad W. Functional analysis of Mycoplasma arthritidis-derived mitogen interactions with class II molecules. Infect Immun. 1997 Jun;65(6):2000–2005. doi: 10.1128/iai.65.6.2000-2005.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chu Z. T., Carswell-Crumpton C., Cole B. C., Jones P. P. The minimal polymorphism of class II E alpha chains is not due to the functional neutrality of mutations. Immunogenetics. 1994;40(1):9–20. doi: 10.1007/BF00163959. [DOI] [PubMed] [Google Scholar]
  7. Cole B. C., Araneo B. A., Sullivan G. J. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. IV. Murine T hybridoma cells exhibit differential accessory cell requirements for activation by M. arthritidis T cell mitogen, concanavalin A, or hen egg-white lysozyme. J Immunol. 1986 May 15;136(10):3572–3578. [PubMed] [Google Scholar]
  8. Cole B. C., Balderas R. A., Ahmed E. A., Kono D., Theofilopoulos A. N. Genomic composition and allelic polymorphisms influence V beta usage by the Mycoplasma arthritidis superantigen. J Immunol. 1993 Apr 15;150(8 Pt 1):3291–3299. [PubMed] [Google Scholar]
  9. Cole B. C., David C. S., Lynch D. H., Kartchner D. R. The use of transfected fibroblasts and transgenic mice establishes that stimulation of T cells by the Mycoplasma arthritidis mitogen is mediated by E alpha. J Immunol. 1990 Jan 15;144(2):420–424. [PubMed] [Google Scholar]
  10. Cole B. C., Daynes R. A., Ward J. R. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. I. Transformation is associated with an H-2-linked gene that maps to the I-E/I-C subregion. J Immunol. 1981 Nov;127(5):1931–1936. [PubMed] [Google Scholar]
  11. Cole B. C., Daynes R. A., Ward J. R. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. III. Ir gene control of lymphocyte transformation correlates with binding of the mitogen to specific Ia-bearing cells. J Immunol. 1982 Oct;129(4):1352–1359. [PubMed] [Google Scholar]
  12. Cole B. C., Griffiths M. M. Triggering and exacerbation of autoimmune arthritis by the Mycoplasma arthritidis superantigen MAM. Arthritis Rheum. 1993 Jul;36(7):994–1002. doi: 10.1002/art.1780360717. [DOI] [PubMed] [Google Scholar]
  13. Cole B. C., Kartchner D. R., Wells D. J. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis (MAM). VIII. Selective activation of T cells expressing distinct V beta T cell receptors from various strains of mice by the "superantigen" MAM. J Immunol. 1990 Jan 15;144(2):425–431. [PubMed] [Google Scholar]
  14. Cole B. C., Knudtson K. L., Oliphant A., Sawitzke A. D., Pole A., Manohar M., Benson L. S., Ahmed E., Atkin C. L. The sequence of the Mycoplasma arthritidis superantigen, MAM: identification of functional domains and comparison with microbial superantigens and plant lectin mitogens. J Exp Med. 1996 Mar 1;183(3):1105–1110. doi: 10.1084/jem.183.3.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Crow M. K., Zagon G., Chu Z., Ravina B., Tumang J. R., Cole B. C., Friedman S. M. Human B cell differentiation induced by microbial superantigens: unselected peripheral blood lymphocytes secrete polyclonal immunoglobulin in response to Mycoplasma arthritidis mitogen. Autoimmunity. 1992;14(1):23–32. doi: 10.3109/08916939309077353. [DOI] [PubMed] [Google Scholar]
  16. Davis C. B., Mitchell D. J., Wraith D. C., Todd J. A., Zamvil S. S., McDevitt H. O., Steinman L., Jones P. P. Polymorphic residues on the I-A beta chain modulate the stimulation of T cell clones specific for the N-terminal peptide of the autoantigen myelin basic protein. J Immunol. 1989 Oct 1;143(7):2083–2093. [PubMed] [Google Scholar]
  17. Dellabona P., Peccoud J., Kappler J., Marrack P., Benoist C., Mathis D. Superantigens interact with MHC class II molecules outside of the antigen groove. Cell. 1990 Sep 21;62(6):1115–1121. doi: 10.1016/0092-8674(90)90388-u. [DOI] [PubMed] [Google Scholar]
  18. Dennig D., Yan Y., Ferguson K., O'Reilly R. J. A novel HLA class II-independent TCR-mediated T cell activation mechanism is distinguished by the V beta specificity of the proliferating oligoclones and their capacity to generate interleukin-2. Cell Immunol. 1996 Aug 1;171(2):200–210. doi: 10.1006/cimm.1996.0194. [DOI] [PubMed] [Google Scholar]
  19. Emery P., Panayi G. S., Welsh K. I., Cole B. C. Rheumatoid factors and HLA-DR4 in RA. J Rheumatol. 1985 Apr;12(2):217–222. [PubMed] [Google Scholar]
  20. Fischer H., Dohlsten M., Lindvall M., Sjögren H. O., Carlsson R. Binding of staphylococcal enterotoxin A to HLA-DR on B cell lines. J Immunol. 1989 May 1;142(9):3151–3157. [PubMed] [Google Scholar]
  21. Fleischer B., Gerardy-Schahn R., Metzroth B., Carrel S., Gerlach D., Köhler W. An evolutionary conserved mechanism of T cell activation by microbial toxins. Evidence for different affinities of T cell receptor-toxin interaction. J Immunol. 1991 Jan 1;146(1):11–17. [PubMed] [Google Scholar]
  22. Fraser J. D. High-affinity binding of staphylococcal enterotoxins A and B to HLA-DR. Nature. 1989 May 18;339(6221):221–223. doi: 10.1038/339221a0. [DOI] [PubMed] [Google Scholar]
  23. Friedman S. M., Posnett D. N., Tumang J. R., Cole B. C., Crow M. K. A potential role for microbial superantigens in the pathogenesis of systemic autoimmune disease. Arthritis Rheum. 1991 Apr;34(4):468–480. doi: 10.1002/art.1780340412. [DOI] [PubMed] [Google Scholar]
  24. Griggs N. D., Pontzer C. H., Jarpe M. A., Johnson H. M. Mapping of multiple binding domains of the superantigen staphylococcal enterotoxin A for HLA. J Immunol. 1992 Apr 15;148(8):2516–2521. [PubMed] [Google Scholar]
  25. Hargreaves R. E., Brehm R. D., Tranter H., Warrens A. N., Lombardi G., Lechler R. I. Definition of sites on HLA-DR1 involved in the T cell response to staphylococcal enterotoxins E and C2. Eur J Immunol. 1995 Dec;25(12):3437–3444. doi: 10.1002/eji.1830251235. [DOI] [PubMed] [Google Scholar]
  26. Heber-Katz E., Acha-Orbea H. The V-region disease hypothesis: evidence from autoimmune encephalomyelitis. Immunol Today. 1989 May;10(5):164–169. doi: 10.1016/0167-5699(89)90174-6. [DOI] [PubMed] [Google Scholar]
  27. Herman A., Croteau G., Sekaly R. P., Kappler J., Marrack P. HLA-DR alleles differ in their ability to present staphylococcal enterotoxins to T cells. J Exp Med. 1990 Sep 1;172(3):709–717. doi: 10.1084/jem.172.3.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Herrmann T., Accolla R. S., MacDonald H. R. Different staphylococcal enterotoxins bind preferentially to distinct major histocompatibility complex class II isotypes. Eur J Immunol. 1989 Nov;19(11):2171–2174. doi: 10.1002/eji.1830191131. [DOI] [PubMed] [Google Scholar]
  29. Howell M. D., Diveley J. P., Lundeen K. A., Esty A., Winters S. T., Carlo D. J., Brostoff S. W. Limited T-cell receptor beta-chain heterogeneity among interleukin 2 receptor-positive synovial T cells suggests a role for superantigen in rheumatoid arthritis. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10921–10925. doi: 10.1073/pnas.88.23.10921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hudson K. R., Tiedemann R. E., Urban R. G., Lowe S. C., Strominger J. L., Fraser J. D. Staphylococcal enterotoxin A has two cooperative binding sites on major histocompatibility complex class II. J Exp Med. 1995 Sep 1;182(3):711–720. doi: 10.1084/jem.182.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Imanishi K., Igarashi H., Uchiyama T. Relative abilities of distinct isotypes of human major histocompatibility complex class II molecules to bind streptococcal pyrogenic exotoxin types A and B. Infect Immun. 1992 Dec;60(12):5025–5029. doi: 10.1128/iai.60.12.5025-5029.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Jardetzky T. S., Brown J. H., Gorga J. C., Stern L. J., Urban R. G., Chi Y. I., Stauffacher C., Strominger J. L., Wiley D. C. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature. 1994 Apr 21;368(6473):711–718. doi: 10.1038/368711a0. [DOI] [PubMed] [Google Scholar]
  33. Kappler J. W., Herman A., Clements J., Marrack P. Mutations defining functional regions of the superantigen staphylococcal enterotoxin B. J Exp Med. 1992 Feb 1;175(2):387–396. doi: 10.1084/jem.175.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kline J. B., Collins C. M. Analysis of the superantigenic activity of mutant and allelic forms of streptococcal pyrogenic exotoxin A. Infect Immun. 1996 Mar;64(3):861–869. doi: 10.1128/iai.64.3.861-869.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Marrack P., Kappler J. The staphylococcal enterotoxins and their relatives. Science. 1990 May 11;248(4956):705–711. doi: 10.1126/science.2185544. [DOI] [PubMed] [Google Scholar]
  36. McNicholas J., Steinmetz M., Hunkapiller T., Jones P., Hood L. DNA sequence of the gene encoding the E alpha Ia polypeptide of the BALB/c mouse. Science. 1982 Dec 17;218(4578):1229–1232. doi: 10.1126/science.6815800. [DOI] [PubMed] [Google Scholar]
  37. Mollick J. A., Cook R. G., Rich R. R. Class II MHC molecules are specific receptors for staphylococcus enterotoxin A. Science. 1989 May 19;244(4906):817–820. doi: 10.1126/science.2658055. [DOI] [PubMed] [Google Scholar]
  38. Nishimura Y., Iwanaga T., Inamitsu T., Yanagawa Y., Yasunami M., Kimura A., Hirokawa K., Sasazuki T. Expression of the human MHC, HLA-DQW6 genes alters the immune response in C57BL/6 mice. J Immunol. 1990 Jul 1;145(1):353–360. [PubMed] [Google Scholar]
  39. Paliard X., West S. G., Lafferty J. A., Clements J. R., Kappler J. W., Marrack P., Kotzin B. L. Evidence for the effects of a superantigen in rheumatoid arthritis. Science. 1991 Jul 19;253(5017):325–329. doi: 10.1126/science.1857971. [DOI] [PubMed] [Google Scholar]
  40. Robinson J. H., Pyle G., Kehoe M. A. Influence of major histocompatibility complex haplotype on the mitogenic response of T cells to staphylococcal enterotoxin B. Infect Immun. 1991 Oct;59(10):3667–3672. doi: 10.1128/iai.59.10.3667-3672.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sawada T., Pergolizzi R., Ito K., Silver J., Atkin C., Cole B. C., Chang M. D. Replacement of the DR alpha chain with the E alpha chain enhances presentation of Mycoplasma arthritidis superantigen by the human class II DR molecule. Infect Immun. 1995 Sep;63(9):3367–3372. doi: 10.1128/iai.63.9.3367-3372.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schad E. M., Zaitseva I., Zaitsev V. N., Dohlsten M., Kalland T., Schlievert P. M., Ohlendorf D. H., Svensson L. A. Crystal structure of the superantigen staphylococcal enterotoxin type A. EMBO J. 1995 Jul 17;14(14):3292–3301. doi: 10.1002/j.1460-2075.1995.tb07336.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Scholl P. R., Diez A., Geha R. S. Staphylococcal enterotoxin B and toxic shock syndrome toxin-1 bind to distinct sites on HLA-DR and HLA-DQ molecules. J Immunol. 1989 Oct 15;143(8):2583–2588. [PubMed] [Google Scholar]
  44. Scholl P. R., Diez A., Karr R., Sekaly R. P., Trowsdale J., Geha R. S. Effect of isotypes and allelic polymorphism on the binding of staphylococcal exotoxins to MHC class II molecules. J Immunol. 1990 Jan 1;144(1):226–230. [PubMed] [Google Scholar]
  45. Scholl P., Diez A., Mourad W., Parsonnet J., Geha R. S., Chatila T. Toxic shock syndrome toxin 1 binds to major histocompatibility complex class II molecules. Proc Natl Acad Sci U S A. 1989 Jun;86(11):4210–4214. doi: 10.1073/pnas.86.11.4210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Swaminathan S., Furey W., Pletcher J., Sax M. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature. 1992 Oct 29;359(6398):801–806. doi: 10.1038/359801a0. [DOI] [PubMed] [Google Scholar]
  47. Taub D. D., Newcomb J. R., Rogers T. J. Effect of isotypic and allotypic variations of MHC class II molecules on staphylococcal enterotoxin presentation to murine T cells. Cell Immunol. 1992 May;141(2):263–278. doi: 10.1016/0008-8749(92)90147-h. [DOI] [PubMed] [Google Scholar]
  48. Torres B. A., Griggs N. D., Johnson H. M. Bacterial and retroviral superantigens share a common binding region on class II MHC antigens. Nature. 1993 Jul 8;364(6433):152–154. doi: 10.1038/364152a0. [DOI] [PubMed] [Google Scholar]
  49. Tumang J. R., Cherniack E. P., Gietl D. M., Cole B. C., Russo C., Crow M. K., Friedman S. M. T helper cell-dependent, microbial superantigen-induced murine B cell activation: polyclonal and antigen-specific antibody responses. J Immunol. 1991 Jul 15;147(2):432–438. [PubMed] [Google Scholar]
  50. Wen R., Cole G. A., Surman S., Blackman M. A., Woodland D. L. Major histocompatibility complex class II-associated peptides control the presentation of bacterial superantigens to T cells. J Exp Med. 1996 Mar 1;183(3):1083–1092. doi: 10.1084/jem.183.3.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Yagi J. J., Rath S., Janeway C. A., Jr Control of T cell responses to staphylococcal enterotoxins by stimulator cell MHC class II polymorphism. J Immunol. 1991 Aug 15;147(4):1398–1405. [PubMed] [Google Scholar]
  52. Zhou P., Anderson G. D., Savarirayan S., Inoko H., David C. S. Human HLA-DQ beta chain presents minor lymphocyte stimulating locus gene products and clonally deletes TCR V beta 6+, V beta 8.1+ T cells in single transgenic mice. Hum Immunol. 1991 May;31(1):47–56. doi: 10.1016/0198-8859(91)90048-e. [DOI] [PubMed] [Google Scholar]
  53. Zhou P., Anderson G. D., Savarirayan S., Inoko H., David C. S. Thymic deletion of V beta 11+, V beta 5+ T cells in H-2E negative, HLA-DQ beta+ single transgenic mice. J Immunol. 1991 Feb 1;146(3):854–859. [PubMed] [Google Scholar]
  54. von Bonin A., Ehrlich S., Malcherek G., Fleischer B. Major histocompatibility complex class II-associated peptides determine the binding of the superantigen toxic shock syndrome toxin-1. Eur J Immunol. 1995 Oct;25(10):2894–2898. doi: 10.1002/eji.1830251028. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES