Skip to main content
British Journal of Sports Medicine logoLink to British Journal of Sports Medicine
. 1998 Jun;32(2):121–124. doi: 10.1136/bjsm.32.2.121

Early assessment of exercise induced skeletal muscle injury using plasma fatty acid binding protein

S Sorichter, J Mair, A Koller, M M Pelsers, B Puschendorf, J F Glatz
PMCID: PMC1756090  PMID: 9631217

Abstract

OBJECTIVE: To test whether fatty acid binding protein (FABP) is a useful plasma marker for the early detection of exercise induced skeletal muscle injury in healthy subjects. METHODS: Plasma concentrations of FABP and myoglobin (Mb) were measured in six healthy physical education teacher trainees after 20 minutes of downhill running (16% incline; mean lactate 4 mmol/l; 70% (VO2MAX). Creatine kinase (CK) was measured for comparison. RESULTS: Significant increases were found in plasma FABP (mean peak level 50 micrograms/l), Mb (823 micrograms/l), and CK (491 U/l). Mb and FABP concentrations were already significantly elevated (p < 0.05) at 30 minutes, but CK not until two hours after exercise. Whereas Mb and FABP decreased to normal levels within 24 hours, CK activity remained elevated until 48 hours. The Mb to FABP ratio in plasma after exercise induced muscle injury was 15.0 (1.3) (mean (SEM)) (range 7.4-31.1), which is within the range of ratios calculated for skeletal muscle tissue contents of Mb and FABP, but different from the reported plasma ratio after myocardial injury (4- 6). CONCLUSIONS: After eccentric exercise induced muscle injury, plasma FABP and Mb increase and decrease more rapidly than CK, indicating that both FABP and Mb are more useful than CK for the early detection of such injuries and the monitoring of injury during repeated exercise bouts. In addition, the Mb to FABP ratio in the plasma identifies the type of muscle injured. 




Full Text

The Full Text of this article is available as a PDF (97.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. E., 3rd, Bodor G. S., Dávila-Román V. G., Delmez J. A., Apple F. S., Ladenson J. H., Jaffe A. S. Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation. 1993 Jul;88(1):101–106. doi: 10.1161/01.cir.88.1.101. [DOI] [PubMed] [Google Scholar]
  2. Clarkson P. M., Nosaka K., Braun B. Muscle function after exercise-induced muscle damage and rapid adaptation. Med Sci Sports Exerc. 1992 May;24(5):512–520. [PubMed] [Google Scholar]
  3. Driessen-Kletter M. F., Amelink G. J., Bär P. R., van Gijn J. Myoglobin is a sensitive marker of increased muscle membrane vulnerability. J Neurol. 1990 Jul;237(4):234–238. doi: 10.1007/BF00314625. [DOI] [PubMed] [Google Scholar]
  4. Driessen-Kletter M. F., Amelink G. J., Bär P. R., van Gijn J. Myoglobin is a sensitive marker of increased muscle membrane vulnerability. J Neurol. 1990 Jul;237(4):234–238. doi: 10.1007/BF00314625. [DOI] [PubMed] [Google Scholar]
  5. Kleine A. H., Glatz J. F., Van Nieuwenhoven F. A., Van der Vusse G. J. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol Cell Biochem. 1992 Oct 21;116(1-2):155–162. doi: 10.1007/BF01270583. [DOI] [PubMed] [Google Scholar]
  6. Mair J., Artner-Dworzak E., Lechleitner P., Morass B., Smidt J., Wagner I., Dienstl F., Puschendorf B. Early diagnosis of acute myocardial infarction by a newly developed rapid immunoturbidimetric assay for myoglobin. Br Heart J. 1992 Nov;68(5):462–468. doi: 10.1136/hrt.68.11.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rodenburg J. B., Bär P. R., De Boer R. W. Relations between muscle soreness and biochemical and functional outcomes of eccentric exercise. J Appl Physiol (1985) 1993 Jun;74(6):2976–2983. doi: 10.1152/jappl.1993.74.6.2976. [DOI] [PubMed] [Google Scholar]
  8. Roos W., Eymann E., Symannek M., Duppenthaler J., Wodzig K. W., Pelsers M., Glatz J. F. Monoclonal antibodies to human heart fatty acid-binding protein. J Immunol Methods. 1995 Jun 14;183(1):149–153. doi: 10.1016/0022-1759(95)00043-a. [DOI] [PubMed] [Google Scholar]
  9. Schreiber A., Feldbrügge R., Key G., Glatz J. F., Spener F. An immunosensor based on disposable electrodes for rapid estimation of fatty acid-binding protein, an early marker of myocardial infarction. Biosens Bioelectron. 1997;12(11):1131–1137. doi: 10.1016/s0956-5663(97)00003-1. [DOI] [PubMed] [Google Scholar]
  10. Sylvén C., Jansson E., Bök K. Myoglobin content in human skeletal muscle and myocardium: relation to fibre size and oxidative capacity. Cardiovasc Res. 1984 Jul;18(7):443–446. doi: 10.1093/cvr/18.7.443. [DOI] [PubMed] [Google Scholar]
  11. Van Nieuwenhoven F. A., Kleine A. H., Wodzig W. H., Hermens W. T., Kragten H. A., Maessen J. G., Punt C. D., Van Dieijen M. P., Van der Vusse G. J., Glatz J. F. Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid-binding protein. Circulation. 1995 Nov 15;92(10):2848–2854. doi: 10.1161/01.cir.92.10.2848. [DOI] [PubMed] [Google Scholar]
  12. Yoshimoto K., Tanaka T., Somiya K., Tsuji R., Okamoto F., Kawamura K., Ohkaru Y., Asayama K., Ishii H. Human heart-type cytoplasmic fatty acid-binding protein as an indicator of acute myocardial infarction. Heart Vessels. 1995;10(6):304–309. doi: 10.1007/BF02911388. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Sports Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES