Abstract
OBJECTIVE: To evaluate the differences in the estimate of body fat percentage (%FM) and the amount (kg) of fat free mass (FFM) by different methods in 26 moderately active adolescents very similar in age, body fatness, and training status. METHODS: Mean (SD) age was 16.7 (0.9) years, height was 177.0 (5.1) cm, and weight 68.0 (5.2) kg. %FM was assessed using dual-energy x ray absorptiometry (DXA) and two skinfold prediction equations: that of Slaughter et al (%FM Sla) and that of Deurenberg et al (%FM Deu). In the same way, FFM was measured using DXA and different impedance equations: those of Suprasongsin et al (FFM Sup), Schaefer et al (FFM Sch), Houtkooper et al (FFM Hou), and Deurenberg et al (FFM Deu). To determine the interchangeability of the different methods of measuring %FM and FFM, one way analysis of variance, standard error (SE), and coefficient of variation (CV%) ((SD/mean) x 100) were used. RESULTS: On average, no significant statistical differences were observed between the values determined for %FM: DXA value, 11.7 (5.4%); %FM Sla, 10.9 (4.0)%; %FM Deu, 11.5 (2.3)%. On the other hand, SE and CV% between each pair of the three methods used showed very large variability. With regard to the measurement or prediction of FFM, the mean value measured by DXA was significantly higher than that predicted by the equation of Sch (+7.2 kg, p < 0.001), Deu (+3.2 kg, p < 0.001), and Hou (+2.6 kg, p < 0.001), whereas it was lower than that predicted by the equation of Sup (-1.6 kg, p < 0.05). The Hou and Deu values were the only two that, on average, did not differ in a statistically significant way, although they showed the highest CV%. CONCLUSIONS: In our sample of moderately active adolescents the estimated values for %FM and FFM appear to be highly dependent on method.
Full Text
The Full Text of this article is available as a PDF (104.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blake G. M., McKeeney D. B., Chhaya S. C., Ryan P. J., Fogelman I. Dual energy x-ray absorptiometry: the effects of beam hardening on bone density measurements. Med Phys. 1992 Mar-Apr;19(2):459–465. doi: 10.1118/1.596834. [DOI] [PubMed] [Google Scholar]
- Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
- Boileau R. A., Lohman T. G., Slaughter M. H., Ball T. E., Going S. B., Hendrix M. K. Hydration of the fat-free body in children during maturation. Hum Biol. 1984 Dec;56(4):651–666. [PubMed] [Google Scholar]
- De Lorenzo A., Candeloro N., Docimo R., Andreoli A., Bollea M. R., Deurenberg P. Comparison of the body composition of age-matched Italian, Ukrainian, and Dutch children. Ann Nutr Metab. 1996;40(3):123–128. doi: 10.1159/000177905. [DOI] [PubMed] [Google Scholar]
- De Lorenzo A., Sasso G. F., Andreoli A., Sorge R., Candeloro N., Cairella M. Improved prediction formula for total body water assessment in obese women. Int J Obes Relat Metab Disord. 1995 Aug;19(8):535–538. [PubMed] [Google Scholar]
- Deurenberg P., Kusters C. S., Smit H. E. Assessment of body composition by bioelectrical impedance in children and young adults is strongly age-dependent. Eur J Clin Nutr. 1990 Apr;44(4):261–268. [PubMed] [Google Scholar]
- Deurenberg P., Pieters J. J., Hautvast J. G. The assessment of the body fat percentage by skinfold thickness measurements in childhood and young adolescence. Br J Nutr. 1990 Mar;63(2):293–303. doi: 10.1079/bjn19900116. [DOI] [PubMed] [Google Scholar]
- Durnin J. V., Womersley J. Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr. 1974 Jul;32(1):77–97. doi: 10.1079/bjn19740060. [DOI] [PubMed] [Google Scholar]
- Ellis K. J. Measuring body fatness in children and young adults: comparison of bioelectric impedance analysis, total body electrical conductivity, and dual-energy X-ray absorptiometry. Int J Obes Relat Metab Disord. 1996 Sep;20(9):866–873. [PubMed] [Google Scholar]
- Fomon S. J., Haschke F., Ziegler E. E., Nelson S. E. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982 May;35(5 Suppl):1169–1175. doi: 10.1093/ajcn/35.5.1169. [DOI] [PubMed] [Google Scholar]
- Formica C., Atkinson M. G., Nyulasi I., McKay J., Heale W., Seeman E. Body composition following hemodialysis: studies using dual-energy X-ray absorptiometry and bioelectrical impedance analysis. Osteoporos Int. 1993 Jul;3(4):192–197. doi: 10.1007/BF01623675. [DOI] [PubMed] [Google Scholar]
- Goran M. I., Driscoll P., Johnson R., Nagy T. R., Hunter G. Cross-calibration of body-composition techniques against dual-energy X-ray absorptiometry in young children. Am J Clin Nutr. 1996 Mar;63(3):299–305. doi: 10.1093/ajcn/63.3.299. [DOI] [PubMed] [Google Scholar]
- Gutin B., Litaker M., Islam S., Manos T., Smith C., Treiber F. Body-composition measurement in 9-11-y-old children by dual-energy X-ray absorptiometry, skinfold-thickness measurements, and bioimpedance analysis. Am J Clin Nutr. 1996 Mar;63(3):287–292. doi: 10.1093/ajcn/63.3.287. [DOI] [PubMed] [Google Scholar]
- Hewitt M. J., Going S. B., Williams D. P., Lohman T. G. Hydration of the fat-free body mass in children and adults: implications for body composition assessment. Am J Physiol. 1993 Jul;265(1 Pt 1):E88–E95. doi: 10.1152/ajpendo.1993.265.1.E88. [DOI] [PubMed] [Google Scholar]
- Horber F. F., Thomi F., Casez J. P., Fonteille J., Jaeger P. Impact of hydration status on body composition as measured by dual energy X-ray absorptiometry in normal volunteers and patients on haemodialysis. Br J Radiol. 1992 Oct;65(778):895–900. doi: 10.1259/0007-1285-65-778-895. [DOI] [PubMed] [Google Scholar]
- Houtkooper L. B., Going S. B., Lohman T. G., Roche A. F., Van Loan M. Bioelectrical impedance estimation of fat-free body mass in children and youth: a cross-validation study. J Appl Physiol (1985) 1992 Jan;72(1):366–373. doi: 10.1152/jappl.1992.72.1.366. [DOI] [PubMed] [Google Scholar]
- Kohrt W. M. Body composition by DXA: tried and true? Med Sci Sports Exerc. 1995 Oct;27(10):1349–1353. [PubMed] [Google Scholar]
- Kohrt W. M. Preliminary evidence that DEXA provides an accurate assessment of body composition. J Appl Physiol (1985) 1998 Jan;84(1):372–377. doi: 10.1152/jappl.1998.84.1.372. [DOI] [PubMed] [Google Scholar]
- Lukaski H. C., Johnson P. E., Bolonchuk W. W., Lykken G. I. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985 Apr;41(4):810–817. doi: 10.1093/ajcn/41.4.810. [DOI] [PubMed] [Google Scholar]
- Lukaski H. C. Methods for the assessment of human body composition: traditional and new. Am J Clin Nutr. 1987 Oct;46(4):537–556. doi: 10.1093/ajcn/46.4.537. [DOI] [PubMed] [Google Scholar]
- Ogle G. D., Allen J. R., Humphries I. R., Lu P. W., Briody J. N., Morley K., Howman-Giles R., Cowell C. T. Body-composition assessment by dual-energy x-ray absorptiometry in subjects aged 4-26 y. Am J Clin Nutr. 1995 Apr;61(4):746–753. doi: 10.1093/ajcn/61.4.746. [DOI] [PubMed] [Google Scholar]
- Prentice A. M., Sonko B. J., Murgatroyd P. R., Goldberg G. R. Obesity as an adaptation to a high-fat diet. Am J Clin Nutr. 1994 Oct;60(4):640–642. doi: 10.1093/ajcn/60.4.640. [DOI] [PubMed] [Google Scholar]
- Prior B. M., Cureton K. J., Modlesky C. M., Evans E. M., Sloniger M. A., Saunders M., Lewis R. D. In vivo validation of whole body composition estimates from dual-energy X-ray absorptiometry. J Appl Physiol (1985) 1997 Aug;83(2):623–630. doi: 10.1152/jappl.1997.83.2.623. [DOI] [PubMed] [Google Scholar]
- Roubenoff R., Kehayias J. J., Dawson-Hughes B., Heymsfield S. B. Use of dual-energy x-ray absorptiometry in body-composition studies: not yet a "gold standard". Am J Clin Nutr. 1993 Nov;58(5):589–591. doi: 10.1093/ajcn/58.5.589. [DOI] [PubMed] [Google Scholar]
- Schaefer F., Georgi M., Zieger A., Schärer K. Usefulness of bioelectric impedance and skinfold measurements in predicting fat-free mass derived from total body potassium in children. Pediatr Res. 1994 May;35(5):617–624. [PubMed] [Google Scholar]
- Slaughter M. H., Lohman T. G., Boileau R. A., Horswill C. A., Stillman R. J., Van Loan M. D., Bemben D. A. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988 Oct;60(5):709–723. [PubMed] [Google Scholar]
- Slaughter M. H., Lohman T. G., Boileau R. A., Stillman R. J., Van Loan M., Horswill C. A., Wilmore J. H. Influence of maturation on relationship of skinfolds to body density: a cross-sectional study. Hum Biol. 1984 Dec;56(4):681–689. [PubMed] [Google Scholar]
- Snead D. B., Birge S. J., Kohrt W. M. Age-related differences in body composition by hydrodensitometry and dual-energy X-ray absorptiometry. J Appl Physiol (1985) 1993 Feb;74(2):770–775. doi: 10.1152/jappl.1993.74.2.770. [DOI] [PubMed] [Google Scholar]
- Suprasongsin C., Kalhan S., Arslanian S. Determination of body composition in children and adolescents: validation of bioelectrical impedance with isotope dilution technique. J Pediatr Endocrinol Metab. 1995 Apr-Jun;8(2):103–109. doi: 10.1515/jpem.1995.8.2.103. [DOI] [PubMed] [Google Scholar]
- Tothill P., Han T. S., Avenell A., McNeill G., Reid D. M. Comparisons between fat measurements by dual-energy X-ray absorptiometry, underwater weighing and magnetic resonance imaging in healthy women. Eur J Clin Nutr. 1996 Nov;50(11):747–752. [PubMed] [Google Scholar]
- Weststrate J. A., Deurenberg P. Body composition in children: proposal for a method for calculating body fat percentage from total body density or skinfold-thickness measurements. Am J Clin Nutr. 1989 Nov;50(5):1104–1115. doi: 10.1093/ajcn/50.5.1104. [DOI] [PubMed] [Google Scholar]