Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Oct;65(10):4258–4266. doi: 10.1128/iai.65.10.4258-4266.1997

Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent.

C Cywes 1, H C Hoppe 1, M Daffé 1, M R Ehlers 1
PMCID: PMC175611  PMID: 9317035

Abstract

The choice of host cell receptor and the mechanism of binding (opsonic versus nonopsonic) may influence the intracellular fate of Mycobacterium tuberculosis. We have identified two substrains of M. tuberculosis H37Rv, designated H37Rv-CC and -HH, that differed in their modes of binding to complement receptor type 3 (CR3) expressed in transfected Chinese hamster ovary (CHO-Mac-1) cells: H37Rv-CC bound nonopsonically, whereas H37Rv-HH bound only after opsonization in fresh serum. H37Rv-CC also bound nonopsonically to untransfected CHO cells, whereas H37Rv-HH binding was enhanced by serum and was mediated by the 1D1 antigen, a bacterial adhesin previously identified as a polar phosphatidylinositol mannoside. H37Rv-CC and -HH had identical IS6110 DNA fingerprint patterns. Of five M. tuberculosis clinical isolates examined, four displayed the same binding phenotype as H37Rv-CC, as did the Erdman strain, whereas one isolate, as well as Mycobacterium smegmatis, behaved like H37Rv-HH. Nonopsonic binding of H37Rv-CC to CHO cell-expressed CR3 was apparently to the beta-glucan lectin site, as it was cation independent and inhibited by laminarin (seaweed beta-glucan) and N-acetylglucosamine; laminarin also inhibited the binding of H37Rv-CC to monocyte-derived macrophages. Further, binding of H37Rv-CC to CHO-Mac-1 cells was inhibited by prior agitation of bacteria with glass beads (which strips outer capsular polysaccharides) and by preincubation with amyloglucosidase, as well as by the presence of capsular D-glucan and D-mannan from M. tuberculosis Erdman, but not by Erdman D-arabino-D-mannan, yeast mannan, or capsular components from H37Rv-HH. Analysis of capsular carbohydrates revealed that H37Rv-CC expressed 5-fold more glucose and 2.5-fold more arabinose and mannose than H37Rv-HH. Flow cytometric detection of surface epitopes indicated that H37Rv-CC displayed twofold less surface-exposed phosphatidylinositol mannoside and bound complement C3 less efficiently than H37Rv-HH; these differences were eliminated after treatment of H37Rv-CC with glass beads. Thus, outer capsular polysaccharides mediate the binding of H37Rv-CC to CR3, likely to the beta-glucan site. Moreover, there are strain-dependent differences in the thickness or composition of capsular polysaccharides that determine the mode of binding of M. tuberculosis to mammalian cells.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong J. A., Hart P. D. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med. 1975 Jul 1;142(1):1–16. doi: 10.1084/jem.142.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bermudez L. E., Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun. 1996 Apr;64(4):1400–1406. doi: 10.1128/iai.64.4.1400-1406.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cross C. E., Bancroft G. J. Ingestion of acapsular Cryptococcus neoformans occurs via mannose and beta-glucan receptors, resulting in cytokine production and increased phagocytosis of the encapsulated form. Infect Immun. 1995 Jul;63(7):2604–2611. doi: 10.1128/iai.63.7.2604-2611.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cywes C., Godenir N. L., Hoppe H. C., Scholle R. R., Steyn L. M., Kirsch R. E., Ehlers M. R. Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 expressed in Chinese hamster ovary cells. Infect Immun. 1996 Dec;64(12):5373–5383. doi: 10.1128/iai.64.12.5373-5383.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diamond M. S., Garcia-Aguilar J., Bickford J. K., Corbi A. L., Springer T. A. The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol. 1993 Feb;120(4):1031–1043. doi: 10.1083/jcb.120.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eissenberg L. G., Poirier S., Goldman W. E. Phenotypic variation and persistence of Histoplasma capsulatum yeasts in host cells. Infect Immun. 1996 Dec;64(12):5310–5314. doi: 10.1128/iai.64.12.5310-5314.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fenton M. J., Vermeulen M. W. Immunopathology of tuberculosis: roles of macrophages and monocytes. Infect Immun. 1996 Mar;64(3):683–690. doi: 10.1128/iai.64.3.683-690.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hirsch C. S., Ellner J. J., Russell D. G., Rich E. A. Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol. 1994 Jan 15;152(2):743–753. [PubMed] [Google Scholar]
  9. Hoppe H. C., de Wet B. J., Cywes C., Daffé M., Ehlers M. R. Identification of phosphatidylinositol mannoside as a mycobacterial adhesin mediating both direct and opsonic binding to nonphagocytic mammalian cells. Infect Immun. 1997 Sep;65(9):3896–3905. doi: 10.1128/iai.65.9.3896-3905.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hunter S. W., Brennan P. J. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J Biol Chem. 1990 Jun 5;265(16):9272–9279. [PubMed] [Google Scholar]
  11. Joiner K. A., Fuhrman S. A., Miettinen H. M., Kasper L. H., Mellman I. Toxoplasma gondii: fusion competence of parasitophorous vacuoles in Fc receptor-transfected fibroblasts. Science. 1990 Aug 10;249(4969):641–646. doi: 10.1126/science.2200126. [DOI] [PubMed] [Google Scholar]
  12. Klein B. S., Newman S. L. Role of cell-surface molecules of Blastomyces dermatitidis in host-pathogen interactions. Trends Microbiol. 1996 Jun;4(6):246–251. doi: 10.1016/0966-842X(96)10028-7. [DOI] [PubMed] [Google Scholar]
  13. Lee B. Y., Horwitz M. A. Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J Clin Invest. 1995 Jul;96(1):245–249. doi: 10.1172/JCI118028. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lemassu A., Daffé M. Structural features of the exocellular polysaccharides of Mycobacterium tuberculosis. Biochem J. 1994 Jan 15;297(Pt 2):351–357. doi: 10.1042/bj2970351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McDonough K. A., Kress Y. Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect Immun. 1995 Dec;63(12):4802–4811. doi: 10.1128/iai.63.12.4802-4811.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Newman S. L., Bucher C., Rhodes J., Bullock W. E. Phagocytosis of Histoplasma capsulatum yeasts and microconidia by human cultured macrophages and alveolar macrophages. Cellular cytoskeleton requirement for attachment and ingestion. J Clin Invest. 1990 Jan;85(1):223–230. doi: 10.1172/JCI114416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ortalo-Magné A., Andersen A. B., Daffé M. The outermost capsular arabinomannans and other mannoconjugates of virulent and avirulent tubercle bacilli. Microbiology. 1996 Apr;142(Pt 4):927–935. doi: 10.1099/00221287-142-4-927. [DOI] [PubMed] [Google Scholar]
  18. Ortalo-Magné A., Dupont M. A., Lemassu A., Andersen A. B., Gounon P., Daffé M. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology. 1995 Jul;141(Pt 7):1609–1620. doi: 10.1099/13500872-141-7-1609. [DOI] [PubMed] [Google Scholar]
  19. Ortalo-Magné A., Lemassu A., Lanéelle M. A., Bardou F., Silve G., Gounon P., Marchal G., Daffé M. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol. 1996 Jan;178(2):456–461. doi: 10.1128/jb.178.2.456-461.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ozanne V., Ortalo-Magne A., Vercellone A., Fournie J. J., Daffe M. Cytometric detection of mycobacterial surface antigens: exposure of mannosyl epitopes and of the arabinan segment of arabinomannans. J Bacteriol. 1996 Dec;178(24):7254–7259. doi: 10.1128/jb.178.24.7254-7259.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ross G. D., Cain J. A., Lachmann P. J. Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin as functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. J Immunol. 1985 May;134(5):3307–3315. [PubMed] [Google Scholar]
  22. Schlesinger L. S., Bellinger-Kawahara C. G., Payne N. R., Horwitz M. A. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol. 1990 Apr 1;144(7):2771–2780. [PubMed] [Google Scholar]
  23. Schlesinger L. S. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol. 1993 Apr 1;150(7):2920–2930. [PubMed] [Google Scholar]
  24. Small P. M., McClenny N. B., Singh S. P., Schoolnik G. K., Tompkins L. S., Mickelsen P. A. Molecular strain typing of Mycobacterium tuberculosis to confirm cross-contamination in the mycobacteriology laboratory and modification of procedures to minimize occurrence of false-positive cultures. J Clin Microbiol. 1993 Jul;31(7):1677–1682. doi: 10.1128/jcm.31.7.1677-1682.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Small P. M., Shafer R. W., Hopewell P. C., Singh S. P., Murphy M. J., Desmond E., Sierra M. F., Schoolnik G. K. Exogenous reinfection with multidrug-resistant Mycobacterium tuberculosis in patients with advanced HIV infection. N Engl J Med. 1993 Apr 22;328(16):1137–1144. doi: 10.1056/NEJM199304223281601. [DOI] [PubMed] [Google Scholar]
  26. Stokes R. W., Haidl I. D., Jefferies W. A., Speert D. P. Mycobacteria-macrophage interactions. Macrophage phenotype determines the nonopsonic binding of Mycobacterium tuberculosis to murine macrophages. J Immunol. 1993 Dec 15;151(12):7067–7076. [PubMed] [Google Scholar]
  27. Thornton B. P., Vetvicka V., Pitman M., Goldman R. C., Ross G. D. Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol. 1996 Feb 1;156(3):1235–1246. [PubMed] [Google Scholar]
  28. Turner M. W. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol Today. 1996 Nov;17(11):532–540. doi: 10.1016/0167-5699(96)10062-1. [DOI] [PubMed] [Google Scholar]
  29. Valentin-Weigand P., Benkel P., Rohde M., Chhatwal G. S. Entry and intracellular survival of group B streptococci in J774 macrophages. Infect Immun. 1996 Jul;64(7):2467–2473. doi: 10.1128/iai.64.7.2467-2473.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Via L. E., Curcic R., Mudd M. H., Dhandayuthapani S., Ulmer R. J., Deretic V. Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. J Bacteriol. 1996 Jun;178(11):3314–3321. doi: 10.1128/jb.178.11.3314-3321.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Warren R., Hauman J., Beyers N., Richardson M., Schaaf H. S., Donald P., van Helden P. Unexpectedly high strain diversity of Mycobacterium tuberculosis in a high-incidence community. S Afr Med J. 1996 Jan;86(1):45–49. [PubMed] [Google Scholar]
  32. van Embden J. D., Cave M. D., Crawford J. T., Dale J. W., Eisenach K. D., Gicquel B., Hermans P., Martin C., McAdam R., Shinnick T. M. Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol. 1993 Feb;31(2):406–409. doi: 10.1128/jcm.31.2.406-409.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. van Soolingen D., de Haas P. E., Hermans P. W., Groenen P. M., van Embden J. D. Comparison of various repetitive DNA elements as genetic markers for strain differentiation and epidemiology of Mycobacterium tuberculosis. J Clin Microbiol. 1993 Aug;31(8):1987–1995. doi: 10.1128/jcm.31.8.1987-1995.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES