Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Oct;65(10):4281–4287. doi: 10.1128/iai.65.10.4281-4287.1997

Priming of neutrophil respiratory burst activity by lipopolysaccharide from Burkholderia cepacia.

J E Hughes 1, J Stewart 1, G R Barclay 1, J R Govan 1
PMCID: PMC175614  PMID: 9317038

Abstract

Neutrophil activation may play an important role in the pathogenesis of respiratory disease in Burkholderia cepacia-colonized cystic fibrosis (CF) patients. As bacterial lipopolysaccharides (LPS) are potent immunostimulatory molecules, we investigated the role of B. cepacia LPS in neutrophil activation processes. LPS extracted from a highly transmissible and virulent strain of B. cepacia (J2315) was found to increase neutrophil surface expression of the beta2 integrin, complement receptor 3, and to prime neutrophil respiratory burst responses to the neutrophil-activating agent fMet-Leu-Phe. By contrast, LPS extracted from a nonmucoid Pseudomonas aeruginosa strain isolated from a patient with CF showed little or no priming activity. As B. cepacia is currently being developed as a biocontrol agent for large-scale agricultural release, we compared LPS molecules from a range of bacterial strains for their proinflammatory ability. Priming activity was demonstrated in LPS extracts from all B. cepacia strains tested, with one environmental strain, J2552, showing the highest activity. These findings indicate (i) that B. cepacia LPS may contribute to the inflammatory nature of B. cepacia infection in CF patients, both by promoting increased neutrophil recruitment and by priming neutrophil respiratory burst responses, and (ii) that environmental strains of B. cepacia may have considerable inflammatory potential in susceptible individuals.

Full Text

The Full Text of this article is available as a PDF (899.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aida Y., Kusumoto K., Nakatomi K., Takada H., Pabst M. J., Maeda K. An analogue of lipid A and LPS from Rhodobacter sphaeroides inhibits neutrophil responses to LPS by blocking receptor recognition of LPS and by depleting LPS-binding protein in plasma. J Leukoc Biol. 1995 Dec;58(6):675–682. doi: 10.1002/jlb.58.6.675. [DOI] [PubMed] [Google Scholar]
  2. Berger M., O'Shea J., Cross A. S., Folks T. M., Chused T. M., Brown E. J., Frank M. M. Human neutrophils increase expression of C3bi as well as C3b receptors upon activation. J Clin Invest. 1984 Nov;74(5):1566–1571. doi: 10.1172/JCI111572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bhat M. A., Tsuda M., Horiike K., Nozaki M., Vaidyanathan C. S., Nakazawa T. Identification and characterization of a new plasmid carrying genes for degradation of 2,4-dichlorophenoxyacetate from Pseudomonas cepacia CSV90. Appl Environ Microbiol. 1994 Jan;60(1):307–312. doi: 10.1128/aem.60.1.307-312.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bjerknes R., Aarskog D. Priming of human polymorphonuclear neutrophilic leukocytes by insulin-like growth factor I: increased phagocytic capacity, complement receptor expression, degranulation, and oxidative burst. J Clin Endocrinol Metab. 1995 Jun;80(6):1948–1955. doi: 10.1210/jcem.80.6.7775645. [DOI] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Brown R. K., Kelly F. J. Role of free radicals in the pathogenesis of cystic fibrosis. Thorax. 1994 Aug;49(8):738–742. doi: 10.1136/thx.49.8.738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Butler S. L., Doherty C. J., Hughes J. E., Nelson J. W., Govan J. R. Burkholderia cepacia and cystic fibrosis: do natural environments present a potential hazard? J Clin Microbiol. 1995 Apr;33(4):1001–1004. doi: 10.1128/jcm.33.4.1001-1004.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Condliffe A. M., Chilvers E. R., Haslett C., Dransfield I. Priming differentially regulates neutrophil adhesion molecule expression/function. Immunology. 1996 Sep;89(1):105–111. doi: 10.1046/j.1365-2567.1996.d01-711.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Döring G. The role of neutrophil elastase in chronic inflammation. Am J Respir Crit Care Med. 1994 Dec;150(6 Pt 2):S114–S117. doi: 10.1164/ajrccm/150.6_Pt_2.S114. [DOI] [PubMed] [Google Scholar]
  10. Edwards S. W. Cell signalling by integrins and immunoglobulin receptors in primed neutrophils. Trends Biochem Sci. 1995 Sep;20(9):362–367. doi: 10.1016/s0968-0004(00)89077-5. [DOI] [PubMed] [Google Scholar]
  11. Ernst J. D., Rosales J. L., Zimmerli S. Calcium signalling initiated by CR1 (CD35) crosslinking is mediated by phagocyte Fc gamma receptors in cis. Biochem Biophys Res Commun. 1995 Apr 26;209(3):1032–1038. doi: 10.1006/bbrc.1995.1601. [DOI] [PubMed] [Google Scholar]
  12. Govan J. R., Brown P. H., Maddison J., Doherty C. J., Nelson J. W., Dodd M., Greening A. P., Webb A. K. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet. 1993 Jul 3;342(8862):15–19. doi: 10.1016/0140-6736(93)91881-l. [DOI] [PubMed] [Google Scholar]
  13. Govan J. R., Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev. 1996 Sep;60(3):539–574. doi: 10.1128/mr.60.3.539-574.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Govan J. R., Hughes J. E., Vandamme P. Burkholderia cepacia: medical, taxonomic and ecological issues. J Med Microbiol. 1996 Dec;45(6):395–407. doi: 10.1099/00222615-45-6-395. [DOI] [PubMed] [Google Scholar]
  15. Govan J. R., Nelson J. W. Microbiology of lung infection in cystic fibrosis. Br Med Bull. 1992 Oct;48(4):912–930. doi: 10.1093/oxfordjournals.bmb.a072585. [DOI] [PubMed] [Google Scholar]
  16. Hallett M. B., Lloyds D. Neutrophil priming: the cellular signals that say 'amber' but not 'green'. Immunol Today. 1995 Jun;16(6):264–268. doi: 10.1016/0167-5699(95)80178-2. [DOI] [PubMed] [Google Scholar]
  17. Havel J., Reineke W. Degradation of Aroclor 1221 in soil by a hybrid pseudomonad. FEMS Microbiol Lett. 1993 Apr 1;108(2):211–217. doi: 10.1111/j.1574-6968.1993.tb06101.x. [DOI] [PubMed] [Google Scholar]
  18. Heiman D. F., Astiz M. E., Rackow E. C., Rhein D., Kim Y. B., Weil M. H. Monophosphoryl lipid A inhibits neutrophil priming by lipopolysaccharide. J Lab Clin Med. 1990 Aug;116(2):237–241. [PubMed] [Google Scholar]
  19. Johnson W. M., Tyler S. D., Rozee K. R. Linkage analysis of geographic and clinical clusters in Pseudomonas cepacia infections by multilocus enzyme electrophoresis and ribotyping. J Clin Microbiol. 1994 Apr;32(4):924–930. doi: 10.1128/jcm.32.4.924-930.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Karlsson A., Markfjäll M., Strömberg N., Dahlgren C. Escherichia coli-induced activation of neutrophil NADPH-oxidase: lipopolysaccharide and formylated peptides act synergistically to induce release of reactive oxygen metabolites. Infect Immun. 1995 Dec;63(12):4606–4612. doi: 10.1128/iai.63.12.4606-4612.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kharazmi A., Fomsgaard A., Conrad R. S., Galanos C., Høiby N. Relationship between chemical composition and biological function of Pseudomonas aeruginosa lipopolysaccharide: effect on human neutrophil chemotaxis and oxidative burst. J Leukoc Biol. 1991 Jan;49(1):15–20. doi: 10.1002/jlb.49.1.15. [DOI] [PubMed] [Google Scholar]
  22. Konstan M. W., Hilliard K. A., Norvell T. M., Berger M. Bronchoalveolar lavage findings in cystic fibrosis patients with stable, clinically mild lung disease suggest ongoing infection and inflammation. Am J Respir Crit Care Med. 1994 Aug;150(2):448–454. doi: 10.1164/ajrccm.150.2.8049828. [DOI] [PubMed] [Google Scholar]
  23. Krumme M. L., Timmis K. N., Dwyer D. F. Degradation of trichloroethylene by Pseudomonas cepacia G4 and the constitutive mutant strain G4 5223 PR1 in aquifer microcosms. Appl Environ Microbiol. 1993 Aug;59(8):2746–2749. doi: 10.1128/aem.59.8.2746-2749.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Liao X., Charlebois I., Ouellet C., Morency M. J., Dewar K., Lightfoot J., Foster J., Siehnel R., Schweizer H., Lam J. S. Physical mapping of 32 genetic markers on the Pseudomonas aeruginosa PAO1 chromosome. Microbiology. 1996 Jan;142(Pt 1):79–86. doi: 10.1099/13500872-142-1-79. [DOI] [PubMed] [Google Scholar]
  26. Mahenthiralingam E., Simpson D. A., Speert D. P. Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis. J Clin Microbiol. 1997 Apr;35(4):808–816. doi: 10.1128/jcm.35.4.808-816.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nelson D., Delahooke T. E., Poxton I. R. Influence of subinhibitory levels of antibiotics on expression of Escherichia coli lipopolysaccharide and binding of anti-lipopolysaccharide monoclonal antibodies. J Med Microbiol. 1993 Aug;39(2):100–106. doi: 10.1099/00222615-39-2-100. [DOI] [PubMed] [Google Scholar]
  28. Nielsen H., Birkholz S., Andersen L. P., Moran A. P. Neutrophil activation by Helicobacter pylori lipopolysaccharides. J Infect Dis. 1994 Jul;170(1):135–139. doi: 10.1093/infdis/170.1.135. [DOI] [PubMed] [Google Scholar]
  29. Palfreyman R. W., Watson M. L., Eden C., Smith A. W. Induction of biologically active interleukin-8 from lung epithelial cells by Burkholderia (Pseudomonas) cepacia products. Infect Immun. 1997 Feb;65(2):617–622. doi: 10.1128/iai.65.2.617-622.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pitt T. L., Kaufmann M. E., Patel P. S., Benge L. C., Gaskin S., Livermore D. M. Type characterisation and antibiotic susceptibility of Burkholderia (Pseudomonas) cepacia isolates from patients with cystic fibrosis in the United Kingdom and the Republic of Ireland. J Med Microbiol. 1996 Mar;44(3):203–210. doi: 10.1099/00222615-44-3-203. [DOI] [PubMed] [Google Scholar]
  31. Revets H., Vandamme P., Van Zeebroeck A., De Boeck K., Struelens M. J., Verhaegen J., Ursi J. P., Verschraegen G., Franckx H., Malfroot A. Burkholderia (Pseudomonas) cepacia and cystic fibrosis: the epidemiology in Belgium. Acta Clin Belg. 1996;51(4):222–230. doi: 10.1080/22953337.1996.11718514. [DOI] [PubMed] [Google Scholar]
  32. Shaw D., Poxton I. R., Govan J. R. Biological activity of Burkholderia (Pseudomonas) cepacia lipopolysaccharide. FEMS Immunol Med Microbiol. 1995 Apr;11(2):99–106. doi: 10.1111/j.1574-695X.1995.tb00095.x. [DOI] [PubMed] [Google Scholar]
  33. Smith C. W., Marlin S. D., Rothlein R., Toman C., Anderson D. C. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest. 1989 Jun;83(6):2008–2017. doi: 10.1172/JCI114111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sun L., Jiang R. Z., Steinbach S., Holmes A., Campanelli C., Forstner J., Sajjan U., Tan Y., Riley M., Goldstein R. The emergence of a highly transmissible lineage of cbl+ Pseudomonas (Burkholderia) cepacia causing CF centre epidemics in North America and Britain. Nat Med. 1995 Jul;1(7):661–666. doi: 10.1038/nm0795-661. [DOI] [PubMed] [Google Scholar]
  35. Sylvester F. A., Sajjan U. S., Forstner J. F. Burkholderia (basonym Pseudomonas) cepacia binding to lipid receptors. Infect Immun. 1996 Apr;64(4):1420–1425. doi: 10.1128/iai.64.4.1420-1425.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tatnell P. J., Russell N. J., Govan J. R., Gacesa P. Colonisation of cystic fibrosis patients by non-mucoid Pseudomonas aeruginosa--characterisation of the alginate from mucoid variants. Biochem Soc Trans. 1996 Aug;24(3):406S–406S. doi: 10.1042/bst024406s. [DOI] [PubMed] [Google Scholar]
  37. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
  38. Yee J., Christou N. V. Neutrophil priming by lipopolysaccharide involves heterogeneity in calcium-mediated signal transduction. Studies using fluo-3 and flow cytometry. J Immunol. 1993 Mar 1;150(5):1988–1997. [PubMed] [Google Scholar]
  39. van Pelt L. J., van Zwieten R., Weening R. S., Roos D., Verhoeven A. J., Bolscher B. G. Limitations on the use of dihydrorhodamine 123 for flow cytometric analysis of the neutrophil respiratory burst. J Immunol Methods. 1996 May 27;191(2):187–196. doi: 10.1016/0022-1759(96)00024-5. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES