Abstract
The nasal cavity of a rodent is lined by an epithelium organized into distinct regional domains responsible for specific physiological functions. Aggregates of nasal lymphoid tissue (NALT) located at the base of the nasal cavity are believed to be sites of induction of mucosal immune responses to airborne antigens. The epithelium overlying NALT contains M cells which are specialized for the transcytosis of immunogens, as demonstrated in other mucosal tissues. We hypothesized that NALT M cells are characterized by distinct glycoconjugate receptors which influence antigen uptake and immune responses to transcytosed antigens. To identify glycoconjugates that may distinguish NALT M cells from other cells of the respiratory epithelium (RE), we performed lectin histochemistry on sections of the hamster nasal cavity with a panel of lectins. Many classes of glycoconjugates were found on epithelial cells in this region. While most lectins bound to sites on both the RE and M cells, probes capable of recognizing alpha-linked galactose were found to label the follicle-associated epithelium (FAE) almost exclusively. By morphological criteria, the FAE contains >90% M cells. To determine if apical glycoconjugates on M cells were accessible from the nasal cavity, an M-cell-selective lectin and a control lectin in parallel were administered intranasally to hamsters. The M-cell-selective lectin was found to specifically target the FAE, while the control lectin did not. Lectin bound to M cells in vivo was efficiently endocytosed, consistent with the role of M cells in antigen transport. Intranasal immunization with lectin-test antigen conjugates without adjuvant stimulated induction of specific serum immunoglobulin G, whereas antigen alone or admixed with lectin did not. The selective recognition of NALT M cells by a lectin in vivo provides a model for microbial adhesin-host cell receptor interactions on M cells and the targeted delivery of immunogens to NALT following intranasal administration.
Full Text
The Full Text of this article is available as a PDF (1.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acharya S., Patanjali S. R., Sajjan S. U., Gopalakrishnan B., Surolia A. Thermodynamic analysis of ligand binding to winged bean (Psophocarpus tetragonolobus) acidic agglutinin reveals its specificity for terminally monofucosylated H-reactive sugars. J Biol Chem. 1990 Jul 15;265(20):11586–11594. [PubMed] [Google Scholar]
- Adams D. R., McFarland L. Z. Morphology of the nasal fossae and associated structures of the hamster (Mesocricetus auratus). J Morphol. 1972 Jun;137(2):161–179. doi: 10.1002/jmor.1051370204. [DOI] [PubMed] [Google Scholar]
- Allen A. K., Neuberger A., Sharon N. The purification, composition and specificity of wheat-germ agglutinin. Biochem J. 1973 Jan;131(1):155–162. doi: 10.1042/bj1310155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allen H. J., Johnson E. A., Matta K. L. Binding-site specificity of lectins from Bauhinia purpurea alba, Sophora japonica, and Wistaria floribunda. Carbohydr Res. 1980 Nov 1;86(1):123–131. doi: 10.1016/s0008-6215(00)84587-5. [DOI] [PubMed] [Google Scholar]
- Bessen D., Fischetti V. A. Influence of intranasal immunization with synthetic peptides corresponding to conserved epitopes of M protein on mucosal colonization by group A streptococci. Infect Immun. 1988 Oct;56(10):2666–2672. doi: 10.1128/iai.56.10.2666-2672.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bundle D. R., Gidney M. A., Kassam N., Rahman A. F. Hybridomas specific for carbohydrates; synthetic human blood group antigens for the production, selection, and characterization of monoclonal typing reagents. J Immunol. 1982 Aug;129(2):678–672. [PubMed] [Google Scholar]
- Clark M. A., Jepson M. A., Hirst B. H. Lectin binding defines and differentiates M-cells in mouse small intestine and caecum. Histochem Cell Biol. 1995 Aug;104(2):161–168. doi: 10.1007/BF01451575. [DOI] [PubMed] [Google Scholar]
- Clark M. A., Jepson M. A., Simmons N. L., Booth T. A., Hirst B. H. Differential expression of lectin-binding sites defines mouse intestinal M-cells. J Histochem Cytochem. 1993 Nov;41(11):1679–1687. doi: 10.1177/41.11.7691933. [DOI] [PubMed] [Google Scholar]
- Clark M. A., Jepson M. A., Simmons N. L., Hirst B. H. Selective binding and transcytosis of Ulex europaeus 1 lectin by mouse Peyer's patch M-cells in vivo. Cell Tissue Res. 1995 Dec;282(3):455–461. doi: 10.1007/BF00318877. [DOI] [PubMed] [Google Scholar]
- Debray H., Montreuil J. Aleuria aurantia agglutinin. A new isolation procedure and further study of its specificity towards various glycopeptides and oligosaccharides. Carbohydr Res. 1989 Jan 15;185(1):15–26. doi: 10.1016/0008-6215(89)84017-0. [DOI] [PubMed] [Google Scholar]
- Falk P., Roth K. A., Gordon J. I. Lectins are sensitive tools for defining the differentiation programs of mouse gut epithelial cell lineages. Am J Physiol. 1994 Jun;266(6 Pt 1):G987–1003. doi: 10.1152/ajpgi.1994.266.6.G987. [DOI] [PubMed] [Google Scholar]
- Gebert A., Hach G., Bartels H. Co-localization of vimentin and cytokeratins in M-cells of rabbit gut-associated lymphoid tissue (GALT). Cell Tissue Res. 1992 Aug;269(2):331–340. doi: 10.1007/BF00319625. [DOI] [PubMed] [Google Scholar]
- Gebert A., Hach G. Differential binding of lectins to M cells and enterocytes in the rabbit cecum. Gastroenterology. 1993 Nov;105(5):1350–1361. doi: 10.1016/0016-5085(93)90139-4. [DOI] [PubMed] [Google Scholar]
- Gebert A. M-cells in the rabbit tonsil exhibit distinctive glycoconjugates in their apical membranes. J Histochem Cytochem. 1996 Sep;44(9):1033–1042. doi: 10.1177/44.9.8773569. [DOI] [PubMed] [Google Scholar]
- Giannasca P. J., Giannasca K. T., Falk P., Gordon J. I., Neutra M. R. Regional differences in glycoconjugates of intestinal M cells in mice: potential targets for mucosal vaccines. Am J Physiol. 1994 Dec;267(6 Pt 1):G1108–G1121. doi: 10.1152/ajpgi.1994.267.6.G1108. [DOI] [PubMed] [Google Scholar]
- Gizurarson S., Tamura S., Kurata T., Hasiguchi K., Ogawa H. The effect of cholera toxin and cholera toxin B subunit on the nasal mucosal membrane. Vaccine. 1991 Nov;9(11):825–832. doi: 10.1016/0264-410x(91)90220-z. [DOI] [PubMed] [Google Scholar]
- Holt P. G., Batty J. E., Turner K. J. Inhibition of specific IgE responses in mice by pre-exposure to inhaled antigen. Immunology. 1981 Mar;42(3):409–417. [PMC free article] [PubMed] [Google Scholar]
- Holt P. G., Haining S., Nelson D. J., Sedgwick J. D. Origin and steady-state turnover of class II MHC-bearing dendritic cells in the epithelium of the conducting airways. J Immunol. 1994 Jul 1;153(1):256–261. [PubMed] [Google Scholar]
- Holt P. G., Schon-Hegrad M. A., McMenamin P. G. Dendritic cells in the respiratory tract. Int Rev Immunol. 1990;6(2-3):139–149. doi: 10.3109/08830189009056625. [DOI] [PubMed] [Google Scholar]
- Jepson M. A., Clark M. A., Simmons N. L., Hirst B. H. Epithelial M cells in the rabbit caecal lymphoid patch display distinctive surface characteristics. Histochemistry. 1993 Dec;100(6):441–447. doi: 10.1007/BF00267824. [DOI] [PubMed] [Google Scholar]
- Jepson M. A., Mason C. M., Bennett M. K., Simmons N. L., Hirst B. H. Co-expression of vimentin and cytokeratins in M cells of rabbit intestinal lymphoid follicle-associated epithelium. Histochem J. 1992 Jan;24(1):33–39. doi: 10.1007/BF01043285. [DOI] [PubMed] [Google Scholar]
- Kaladas P. M., Kabat E. A., Iglesias J. L., Lis H., Sharon N. Immunochemical studies on the combining site of the D-galactose/N-acetyl-D-galactosamine specific lectin from Erythrina cristagalli seeds. Arch Biochem Biophys. 1982 Sep;217(2):624–637. doi: 10.1016/0003-9861(82)90544-6. [DOI] [PubMed] [Google Scholar]
- Katz J., Russell M. W., Harmon C. C., Buckner G. P., White P. L., Richardson G. J., Michalek S. M. Induction of salivary IgA responses to Streptococcus mutans antigen I/II after intranasal immunization. Adv Exp Med Biol. 1995;371B:1153–1156. [PubMed] [Google Scholar]
- Kawaguchi T., Matsumoto I., Osawa T. Studies on hemagglutinins from Maackia amurensis seeds. J Biol Chem. 1974 May 10;249(9):2786–2792. [PubMed] [Google Scholar]
- Khan M. I., Sastry M. V., Surolia A. Thermodynamic and kinetic analysis of carbohydrate binding to the basic lectin from winged bean (Psophocarpus tetragonolobus). J Biol Chem. 1986 Mar 5;261(7):3013–3019. [PubMed] [Google Scholar]
- Knibbs R. N., Goldstein I. J., Ratcliffe R. M., Shibuya N. Characterization of the carbohydrate binding specificity of the leukoagglutinating lectin from Maackia amurensis. Comparison with other sialic acid-specific lectins. J Biol Chem. 1991 Jan 5;266(1):83–88. [PubMed] [Google Scholar]
- Koornstra P. J., de Jong F. I., Vlek L. F., Marres E. H., van Breda Vriesman P. J. The Waldeyer ring equivalent in the rat. A model for analysis of oronasopharyngeal immune responses. Acta Otolaryngol. 1991;111(3):591–599. doi: 10.3109/00016489109138388. [DOI] [PubMed] [Google Scholar]
- Kornfeld K., Reitman M. L., Kornfeld R. The carbohydrate-binding specificity of pea and lentil lectins. Fucose is an important determinant. J Biol Chem. 1981 Jul 10;256(13):6633–6640. [PubMed] [Google Scholar]
- Kuper C. F., Hameleers D. M., Bruijntjes J. P., van der Ven I., Biewenga J., Sminia T. Lymphoid and non-lymphoid cells in nasal-associated lymphoid tissue (NALT) in the rat. An immuno- and enzyme-histochemical study. Cell Tissue Res. 1990 Feb;259(2):371–377. doi: 10.1007/BF00318460. [DOI] [PubMed] [Google Scholar]
- Kuper C. F., Koornstra P. J., Hameleers D. M., Biewenga J., Spit B. J., Duijvestijn A. M., van Breda Vriesman P. J., Sminia T. The role of nasopharyngeal lymphoid tissue. Immunol Today. 1992 Jun;13(6):219–224. doi: 10.1016/0167-5699(92)90158-4. [DOI] [PubMed] [Google Scholar]
- Langermann S., Palaszynski S., Sadziene A., Stover C. K., Koenig S. Systemic and mucosal immunity induced by BCG vector expressing outer-surface protein A of Borrelia burgdorferi. Nature. 1994 Dec 8;372(6506):552–555. doi: 10.1038/372552a0. [DOI] [PubMed] [Google Scholar]
- Matsumoto I., Jimbo A., Mizuno Y., Seno N., Jeanloz R. W. Purification and characterization of potato lectin. J Biol Chem. 1983 Mar 10;258(5):2886–2891. [PubMed] [Google Scholar]
- Maxwell M. H. Two rapid and simple methods used for the removal of resins from 1.0 micron thick epoxy sections. J Microsc. 1978 Mar;112(2):253–255. doi: 10.1111/j.1365-2818.1978.tb01174.x. [DOI] [PubMed] [Google Scholar]
- Mori S., Sawai T., Teshima T., Kyogoku M. A new decalcifying technique for immunohistochemical studies of calcified tissue, especially applicable to cell surface marker demonstration. J Histochem Cytochem. 1988 Jan;36(1):111–114. doi: 10.1177/36.1.3275709. [DOI] [PubMed] [Google Scholar]
- Murphy L. A., Goldstein I. J. Physical-chemical characterization and carbohydrate-binding activity of the A and B subunits of the Bandeiraea simplificolia I isolectins. Biochemistry. 1979 Oct 30;18(22):4999–5005. doi: 10.1021/bi00589a030. [DOI] [PubMed] [Google Scholar]
- Neutra M. R., Pringault E., Kraehenbuhl J. P. Antigen sampling across epithelial barriers and induction of mucosal immune responses. Annu Rev Immunol. 1996;14:275–300. doi: 10.1146/annurev.immunol.14.1.275. [DOI] [PubMed] [Google Scholar]
- Owen R. L., Bhalla D. K. Cytochemical analysis of alkaline phosphatase and esterase activities and of lectin-binding and anionic sites in rat and mouse Peyer's patch M cells. Am J Anat. 1983 Oct;168(2):199–212. doi: 10.1002/aja.1001680207. [DOI] [PubMed] [Google Scholar]
- Owen R. L. M cells--entryways of opportunity for enteropathogens. J Exp Med. 1994 Jul 1;180(1):7–9. doi: 10.1084/jem.180.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pabst R. Is BALT a major component of the human lung immune system? Immunol Today. 1992 Apr;13(4):119–122. doi: 10.1016/0167-5699(92)90106-H. [DOI] [PubMed] [Google Scholar]
- Pereira M. E., Kabat E. A. Specificity of purified hemagglutinin (lectin) from Lotus tetragonolobus. Biochemistry. 1974 Jul 16;13(15):3184–3192. doi: 10.1021/bi00712a029. [DOI] [PubMed] [Google Scholar]
- Pereira M. E., Kisailus E. C., Gruezo F., Kabat E. A. Immunochemical studies on the combining site of the blood group H-specific lectin 1 from Ulex europeus seeds. Arch Biochem Biophys. 1978 Jan 15;185(1):108–115. doi: 10.1016/0003-9861(78)90149-2. [DOI] [PubMed] [Google Scholar]
- Petryniak J., Goldstein I. J. Immunochemical studies on the interaction between synthetic glycoconjugates and alpha-L-fucosyl binding lectins. Biochemistry. 1986 May 20;25(10):2829–2838. doi: 10.1021/bi00358a014. [DOI] [PubMed] [Google Scholar]
- Piller V., Piller F., Cartron J. P. Comparison of the carbohydrate-binding specificities of seven N-acetyl-D-galactosamine-recognizing lectins. Eur J Biochem. 1990 Jul 31;191(2):461–466. doi: 10.1111/j.1432-1033.1990.tb19144.x. [DOI] [PubMed] [Google Scholar]
- Sastry M. V., Banarjee P., Patanjali S. R., Swamy M. J., Swarnalatha G. V., Surolia A. Analysis of saccharide binding to Artocarpus integrifolia lectin reveals specific recognition of T-antigen (beta-D-Gal(1----3)D-GalNAc). J Biol Chem. 1986 Sep 5;261(25):11726–11733. [PubMed] [Google Scholar]
- Shibuya N., Goldstein I. J., Broekaert W. F., Nsimba-Lubaki M., Peeters B., Peumans W. J. The elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(alpha 2-6)Gal/GalNAc sequence. J Biol Chem. 1987 Feb 5;262(4):1596–1601. [PubMed] [Google Scholar]
- Smith M. W., James P. S., Tivey D. R., Brown D. Automated histochemical analysis of cell populations in the intact follicle-associated epithelium of the mouse Peyer's patch. Histochem J. 1988 Aug;20(8):443–448. doi: 10.1007/BF01002430. [DOI] [PubMed] [Google Scholar]
- Spicer S. S., Schulte B. A. Diversity of cell glycoconjugates shown histochemically: a perspective. J Histochem Cytochem. 1992 Jan;40(1):1–38. doi: 10.1177/40.1.1370305. [DOI] [PubMed] [Google Scholar]
- Spit B. J., Hendriksen E. G., Bruijntjes J. P., Kuper C. F. Nasal lymphoid tissue in the rat. Cell Tissue Res. 1989 Jan;255(1):193–198. doi: 10.1007/BF00229081. [DOI] [PubMed] [Google Scholar]
- Staats H. F., Nichols W. G., Palker T. J. Mucosal immunity to HIV-1: systemic and vaginal antibody responses after intranasal immunization with the HIV-1 C4/V3 peptide T1SP10 MN(A). J Immunol. 1996 Jul 1;157(1):462–472. [PubMed] [Google Scholar]
- Sughii S., Kabat E. A., Baer H. H. Further immunochemical studies on the combining sites of Lotus tetragonolobus and Ulex europaeus I and II lectins. Carbohydr Res. 1982 Jan 1;99(1):99–101. doi: 10.1016/s0008-6215(00)80982-9. [DOI] [PubMed] [Google Scholar]
- Swamy M. J., Gupta D., Mahanta S. K., Surolia A. Further characterization of the saccharide specificity of peanut (Arachis hypogaea) agglutinin. Carbohydr Res. 1991 Jun 25;213:59–67. doi: 10.1016/s0008-6215(00)90598-6. [DOI] [PubMed] [Google Scholar]
- Tamura S. I., Asanuma H., Ito Y., Hirabayashi Y., Suzuki Y., Nagamine T., Aizawa C., Kurata T., Oya A. Superior cross-protective effect of nasal vaccination to subcutaneous inoculation with influenza hemagglutinin vaccine. Eur J Immunol. 1992 Feb;22(2):477–481. doi: 10.1002/eji.1830220228. [DOI] [PubMed] [Google Scholar]
- Tilney N. L. Patterns of lymphatic drainage in the adult laboratory rat. J Anat. 1971 Sep;109(Pt 3):369–383. [PMC free article] [PubMed] [Google Scholar]
- Uraih L. C., Maronpot R. R. Normal histology of the nasal cavity and application of special techniques. Environ Health Perspect. 1990 Apr;85:187–208. doi: 10.1289/ehp.85-1568325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willoughby J. B., Willoughby W. F. In vivo responses to inhaled proteins. I. Quantitative analysis of antigen uptake, fate, and immunogenicity in a rabbit model system. J Immunol. 1977 Dec;119(6):2137–2146. [PubMed] [Google Scholar]
- Wu H. Y., Nikolova E. B., Beagley K. W., Eldridge J. H., Russell M. W. Development of antibody-secreting cells and antigen-specific T cells in cervical lymph nodes after intranasal immunization. Infect Immun. 1997 Jan;65(1):227–235. doi: 10.1128/iai.65.1.227-235.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu H. Y., Nikolova E. B., Beagley K. W., Russell M. W. Induction of antibody-secreting cells and T-helper and memory cells in murine nasal lymphoid tissue. Immunology. 1996 Aug;88(4):493–500. doi: 10.1046/j.1365-2567.1996.d01-690.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu H. Y., Russell M. W. Induction of mucosal immunity by intranasal application of a streptococcal surface protein antigen with the cholera toxin B subunit. Infect Immun. 1993 Jan;61(1):314–322. doi: 10.1128/iai.61.1.314-322.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young J. T. Histopathologic examination of the rat nasal cavity. Fundam Appl Toxicol. 1981 Jul-Aug;1(4):309–312. doi: 10.1016/s0272-0590(81)80037-1. [DOI] [PubMed] [Google Scholar]
- de Aizpurua H. J., Russell-Jones G. J. Oral vaccination. Identification of classes of proteins that provoke an immune response upon oral feeding. J Exp Med. 1988 Feb 1;167(2):440–451. doi: 10.1084/jem.167.2.440. [DOI] [PMC free article] [PubMed] [Google Scholar]