Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Oct;65(10):4299–4308. doi: 10.1128/iai.65.10.4299-4308.1997

Hyperproduction, purification, and mechanism of action of the cytotoxic enterotoxin produced by Aeromonas hydrophila.

M R Ferguson 1, X J Xu 1, C W Houston 1, J W Peterson 1, D H Coppenhaver 1, V L Popov 1, A K Chopra 1
PMCID: PMC175616  PMID: 9317040

Abstract

A gene encoding the cytotoxic enterotoxin (Act) from Aeromonas hydrophila was hyperexpressed with the pET, pTRX, and pGEX vector systems. Maximum toxin yield was obtained with the pTRX vector. Approximately 40 to 60% of Act was in a soluble form with the pTRX and pET vector systems. The toxin protein was purified to homogeneity by a combination of ammonium sulfate precipitation and fast protein liquid chromatography-based column chromatographies, including hydrophobic, anion-exchange, sizing, and hydroxylapatite chromatographies. Purified mature toxin migrated as a 52-kDa polypeptide on a sodium dodecyl sulfate (SDS)polyacrylamide gel that reacted with Act-specific antibodies in immunoblots. The minimal amount of toxin needed to cause fluid secretion in rat ileal loops was 200 ng, and the 50% lethal dose for mice was 27.5 ng when injected intravenously. Binding of the toxin to erythrocytes was temperature dependent, with no binding occurring at 4 degrees C. However, at 37 degrees C the toxin bound to erythrocytes within 1 to 2 min. It was determined that the mechanism of action of the toxin involved the formation of pores in erythrocyte membranes, and the diameter of the pores was estimated to be 1.14 to 2.8 nm, as determined by the use of saccharides of different sizes and by electron microscopy. Calcium chloride prevented lysis of erythrocytes by the toxin; however, it did not affect the binding and pore-forming capabilities of the toxin. A dose-dependent reduction in hemoglobin release from erythrocytes was observed when Act was preincubated with cholesterol, but not with myristylated cholesterol. With 14C-labeled cholesterol and gel filtration, the binding of cholesterol to Act was demonstrated. None of the other phospholipids and glycolipids tested reduced the hemolytic activity of Act. The toxin also appeared to undergo aggregation when preincubated with cholesterol, as determined by SDS-polyacrylamide gel electorphoresis. As a result of this aggregation, Act's capacity to form pores in the erythrocyte membrane was inhibited.

Full Text

The Full Text of this article is available as a PDF (1.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asao T., Kinoshita Y., Kozaki S., Uemura T., Sakaguchi G. Purification and some properties of Aeromonas hydrophila hemolysin. Infect Immun. 1984 Oct;46(1):122–127. doi: 10.1128/iai.46.1.122-127.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Asao T., Kozaki S., Kato K., Kinoshita Y., Otsu K., Uemura T., Sakaguchi G. Purification and characterization of an Aeromonas hydrophila hemolysin. J Clin Microbiol. 1986 Aug;24(2):228–232. doi: 10.1128/jcm.24.2.228-232.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballard J., Crabtree J., Roe B. A., Tweten R. K. The primary structure of Clostridium septicum alpha-toxin exhibits similarity with that of Aeromonas hydrophila aerolysin. Infect Immun. 1995 Jan;63(1):340–344. doi: 10.1128/iai.63.1.340-344.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhakdi S., Mackman N., Nicaud J. M., Holland I. B. Escherichia coli hemolysin may damage target cell membranes by generating transmembrane pores. Infect Immun. 1986 Apr;52(1):63–69. doi: 10.1128/iai.52.1.63-69.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bhakdi S., Muhly M., Füssle R. Correlation between toxin binding and hemolytic activity in membrane damage by staphylococcal alpha-toxin. Infect Immun. 1984 Nov;46(2):318–323. doi: 10.1128/iai.46.2.318-323.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blomqvist L., Sjögren A. Production and characterization of monoclonal antibodies against Staphylococcus aureus alpha-toxin. Toxicon. 1988;26(3):265–273. doi: 10.1016/0041-0101(88)90217-6. [DOI] [PubMed] [Google Scholar]
  7. Chakraborty T., Huhle B., Bergbauer H., Goebel W. Cloning, expression, and mapping of the Aeromonas hydrophila aerolysin gene determinant in Escherichia coli K-12. J Bacteriol. 1986 Jul;167(1):368–374. doi: 10.1128/jb.167.1.368-374.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chopra A. K., Houston C. W., Peterson J. W., Jin G. F. Cloning, expression, and sequence analysis of a cytolytic enterotoxin gene from Aeromonas hydrophila. Can J Microbiol. 1993 May;39(5):513–523. doi: 10.1139/m93-073. [DOI] [PubMed] [Google Scholar]
  9. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  10. Ferguson M. R., Xu X. J., Houston C. W., Peterson J. W., Chopra A. K. Amino-acid residues involved in biological functions of the cytolytic enterotoxin from Aeromonas hydrophila. Gene. 1995 Apr 14;156(1):79–83. doi: 10.1016/0378-1119(95)00043-6. [DOI] [PubMed] [Google Scholar]
  11. Garland W. J., Buckley J. T. The cytolytic toxin aerolysin must aggregate to disrupt erythrocytes, and aggregation is stimulated by human glycophorin. Infect Immun. 1988 May;56(5):1249–1253. doi: 10.1128/iai.56.5.1249-1253.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Green M. J., Buckley J. T. Site-directed mutagenesis of the hole-forming toxin aerolysin: studies on the roles of histidines in receptor binding and oligomerization of the monomer. Biochemistry. 1990 Feb 27;29(8):2177–2180. doi: 10.1021/bi00460a031. [DOI] [PubMed] [Google Scholar]
  13. Gruber H. J., Wilmsen H. U., Cowell S., Schindler H., Buckley J. T. Partial purification of the rat erythrocyte receptor for the channel-forming toxin aerolysin and reconstitution into planar lipid bilayers. Mol Microbiol. 1994 Dec;14(5):1093–1101. doi: 10.1111/j.1365-2958.1994.tb01341.x. [DOI] [PubMed] [Google Scholar]
  14. Guan K. L., Dixon J. E. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. doi: 10.1016/0003-2697(91)90534-z. [DOI] [PubMed] [Google Scholar]
  15. Harris R. W., Sims P. J., Tweten R. K. Kinetic aspects of the aggregation of Clostridium perfringens theta-toxin on erythrocyte membranes. A fluorescence energy transfer study. J Biol Chem. 1991 Apr 15;266(11):6936–6941. [PubMed] [Google Scholar]
  16. Hayashi T., Kamio Y., Hishinuma F., Usami Y., Titani K., Terawaki Y. Pseudomonas aeruginosa cytotoxin: the nucleotide sequence of the gene and the mechanism of activation of the protoxin. Mol Microbiol. 1989 Jul;3(7):861–868. doi: 10.1111/j.1365-2958.1989.tb00235.x. [DOI] [PubMed] [Google Scholar]
  17. Honda T., Ni Y., Miwatani T., Adachi T., Kim J. The thermostable direct hemolysin of Vibrio parahaemolyticus is a pore-forming toxin. Can J Microbiol. 1992 Nov;38(11):1175–1180. doi: 10.1139/m92-192. [DOI] [PubMed] [Google Scholar]
  18. Howard S. P., Buckley J. T. Activation of the hole-forming toxin aerolysin by extracellular processing. J Bacteriol. 1985 Jul;163(1):336–340. doi: 10.1128/jb.163.1.336-340.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Howard S. P., Buckley J. T. Membrane glycoprotein receptor and hole-forming properties of a cytolytic protein toxin. Biochemistry. 1982 Mar 30;21(7):1662–1667. doi: 10.1021/bi00536a029. [DOI] [PubMed] [Google Scholar]
  20. Howard S. P., Buckley J. T. Molecular cloning and expression in Escherichia coli of the structural gene for the hemolytic toxin aerolysin from Aeromonas hydrophila. Mol Gen Genet. 1986 Aug;204(2):289–295. doi: 10.1007/BF00425512. [DOI] [PubMed] [Google Scholar]
  21. Howard S. P., Garland W. J., Green M. J., Buckley J. T. Nucleotide sequence of the gene for the hole-forming toxin aerolysin of Aeromonas hydrophila. J Bacteriol. 1987 Jun;169(6):2869–2871. doi: 10.1128/jb.169.6.2869-2871.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Husslein V., Huhle B., Jarchau T., Lurz R., Goebel W., Chakraborty T. Nucleotide sequence and transcriptional analysis of the aerCaerA region of Aeromonas sobria encoding aerolysin and its regulatory region. Mol Microbiol. 1988 Jul;2(4):507–517. doi: 10.1111/j.1365-2958.1988.tb00057.x. [DOI] [PubMed] [Google Scholar]
  23. Ikigai H., Akatsuka A., Tsujiyama H., Nakae T., Shimamura T. Mechanism of membrane damage by El Tor hemolysin of Vibrio cholerae O1. Infect Immun. 1996 Aug;64(8):2968–2973. doi: 10.1128/iai.64.8.2968-2973.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kim H. R., Rho H. W., Jeong M. H., Park J. W., Kim J. S., Park B. H., Kim U. H., Park S. D. Hemolytic mechanism of cytolysin produced from V. vulnificus. Life Sci. 1993;53(7):571–577. doi: 10.1016/0024-3205(93)90714-e. [DOI] [PubMed] [Google Scholar]
  25. Kraut R. P., Bose R., Cragoe E. J., Jr, Greenberg A. H. The Na+/Ca2+ exchanger regulates cytolysin/perforin-induced increases in intracellular Ca2+ and susceptibility to cytolysis. J Immunol. 1992 Apr 15;148(8):2489–2496. [PubMed] [Google Scholar]
  26. LaVallie E. R., DiBlasio E. A., Kovacic S., Grant K. L., Schendel P. F., McCoy J. M. A thioredoxin gene fusion expression system that circumvents inclusion body formation in the E. coli cytoplasm. Biotechnology (N Y) 1993 Feb;11(2):187–193. doi: 10.1038/nbt0293-187. [DOI] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Ludwig A., Jarchau T., Benz R., Goebel W. The repeat domain of Escherichia coli haemolysin (HlyA) is responsible for its Ca2+-dependent binding to erythrocytes. Mol Gen Genet. 1988 Nov;214(3):553–561. doi: 10.1007/BF00330494. [DOI] [PubMed] [Google Scholar]
  29. Lutz F., Mohr M., Grimmig M., Leidolf R., Linder D. Pseudomonas aeruginosa cytotoxin-binding protein in rabbit erythrocyte membranes. An oligomer of 28 kDa with similarity to transmembrane channel proteins. Eur J Biochem. 1993 Nov 1;217(3):1123–1128. doi: 10.1111/j.1432-1033.1993.tb18345.x. [DOI] [PubMed] [Google Scholar]
  30. Miyake M., Honda T., Miwatani T. Effects of divalent cations and saccharides on Vibrio metschnikovii cytolysin-induced hemolysis of rabbit erythrocytes. Infect Immun. 1989 Jan;57(1):158–163. doi: 10.1128/iai.57.1.158-163.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nakamura M., Sekino N., Iwamoto M., Ohno-Iwashita Y. Interaction of theta-toxin (perfringolysin O), a cholesterol-binding cytolysin, with liposomal membranes: change in the aromatic side chains upon binding and insertion. Biochemistry. 1995 May 16;34(19):6513–6520. doi: 10.1021/bi00019a032. [DOI] [PubMed] [Google Scholar]
  32. Peterson J. W., Dickey W. D., Saini S. S., Gourley W., Klimpel G. R., Chopra A. K. Phospholipase A2 activating protein and idiopathic inflammatory bowel disease. Gut. 1996 Nov;39(5):698–704. doi: 10.1136/gut.39.5.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Prasad R., Chopra A. K., Chary P., Peterson J. W. Expression and characterization of the cloned Salmonella typhimurium enterotoxin. Microb Pathog. 1992 Aug;13(2):109–121. doi: 10.1016/0882-4010(92)90071-u. [DOI] [PubMed] [Google Scholar]
  34. Rose J. M., Houston C. W., Coppenhaver D. H., Dixon J. D., Kurosky A. Purification and chemical characterization of a cholera toxin-cross-reactive cytolytic enterotoxin produced by a human isolate of Aeromonas hydrophila. Infect Immun. 1989 Apr;57(4):1165–1169. doi: 10.1128/iai.57.4.1165-1169.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rose J. M., Houston C. W., Kurosky A. Bioactivity and immunological characterization of a cholera toxin-cross-reactive cytolytic enterotoxin from Aeromonas hydrophila. Infect Immun. 1989 Apr;57(4):1170–1176. doi: 10.1128/iai.57.4.1170-1176.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sellman B. R., Kagan B. L., Tweten R. K. Generation of a membrane-bound, oligomerized pre-pore complex is necessary for pore formation by Clostridium septicum alpha toxin. Mol Microbiol. 1997 Feb;23(3):551–558. doi: 10.1046/j.1365-2958.1997.d01-1876.x. [DOI] [PubMed] [Google Scholar]
  37. Tabor S., Richardson C. C. A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1074–1078. doi: 10.1073/pnas.82.4.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yamamoto K., Ichinose Y., Shinagawa H., Makino K., Nakata A., Iwanaga M., Honda T., Miwatani T. Two-step processing for activation of the cytolysin/hemolysin of Vibrio cholerae O1 biotype El Tor: nucleotide sequence of the structural gene (hlyA) and characterization of the processed products. Infect Immun. 1990 Dec;58(12):4106–4116. doi: 10.1128/iai.58.12.4106-4116.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zitzer A., Walev I., Palmer M., Bhakdi S. Characterization of Vibrio cholerae El Tor cytolysin as an oligomerizing pore-forming toxin. Med Microbiol Immunol. 1995 May;184(1):37–44. doi: 10.1007/BF00216788. [DOI] [PubMed] [Google Scholar]
  40. van Leengoed L. A., Dickerson H. W. Influence of calcium on secretion and activity of the cytolysins of Actinobacillus pleuropneumoniae. Infect Immun. 1992 Feb;60(2):353–359. doi: 10.1128/iai.60.2.353-359.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES