Abstract
Current knowledge of the physiological, biomechanical, and sensory effects of the cycle to run transition in the Olympic triathlon (1.5 km, 10 km, 40 km) is reviewed and implications for the training of junior and elite triathletes are discussed. Triathlon running elicits hyperventilation, increased heart rate, decreased pulmonary compliance, and exercise induced hypoxaemia. This may be due to exercise intensity, ventilatory muscle fatigue, dehydration, muscle fibre damage, a shift in metabolism towards fat oxidation, and depleted glycogen stores after a 40 km cycle. The energy cost (CR) of running during the cycle to run transition is also increased over that of control running. The increase in CR varies from 1.6% to 11.6% and is a reflection of triathlete ability level. This increase may be partly related to kinematic alterations, but research suggests that most biomechanical parameters are unchanged. A more forward leaning trunk inclination is the most significant observation reported. Running pattern, and thus running economy, could also be influenced by sensorimotor perturbations related to the change in posture. Technical skill in the transition area is obviously very important. The conditions under which the preceding cycling section is performed—that is, steady state or stochastic power output, drafting or non-drafting—are likely to influence the speed of adjustment to transition. The extent to which a decrease in the average 10 km running speed occurs during competition must be investigated further. It is clear that the higher the athlete is placed in the field at the end of the bike section, the greater the importance to their finishing position of both a quick transition area time and optimal adjustment to the physiological demands of the cycle to run transition. The need for, and current methods of, training to prepare junior and elite triathletes for a better transition are critically reviewed in light of the effects of sequential cycle to run exercise.
Key Words: triathlon; cycle to run transition; training; performance
Full Text
The Full Text of this article is available as a PDF (138.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borghouts L. B., Keizer H. A. Exercise and insulin sensitivity: a review. Int J Sports Med. 2000 Jan;21(1):1–12. doi: 10.1055/s-2000-8847. [DOI] [PubMed] [Google Scholar]
- Caillaud C., Serre-Cousiné O., Anselme F., Capdevilla X., Préfaut C. Computerized tomography and pulmonary diffusing capacity in highly trained athletes after performing a triathlon. J Appl Physiol (1985) 1995 Oct;79(4):1226–1232. doi: 10.1152/jappl.1995.79.4.1226. [DOI] [PubMed] [Google Scholar]
- Candau R., Belli A., Millet G. Y., Georges D., Barbier B., Rouillon J. D. Energy cost and running mechanics during a treadmill run to voluntary exhaustion in humans. Eur J Appl Physiol Occup Physiol. 1998 May;77(6):479–485. doi: 10.1007/s004210050363. [DOI] [PubMed] [Google Scholar]
- De Vito G., Bernardi M., Sproviero E., Figura F. Decrease of endurance performance during Olympic Triathlon. Int J Sports Med. 1995 Jan;16(1):24–28. doi: 10.1055/s-2007-972958. [DOI] [PubMed] [Google Scholar]
- Farber H. W., Schaefer E. J., Franey R., Grimaldi R., Hill N. S. The endurance triathlon: metabolic changes after each event and during recovery. Med Sci Sports Exerc. 1991 Aug;23(8):959–965. [PubMed] [Google Scholar]
- Guezennec C. Y., Vallier J. M., Bigard A. X., Durey A. Increase in energy cost of running at the end of a triathlon. Eur J Appl Physiol Occup Physiol. 1996;73(5):440–445. doi: 10.1007/BF00334421. [DOI] [PubMed] [Google Scholar]
- Hausswirth C., Bigard A. X., Berthelot M., Thomaïdis M., Guezennec C. Y. Variability in energy cost of running at the end of a triathlon and a marathon. Int J Sports Med. 1996 Nov;17(8):572–579. doi: 10.1055/s-2007-972897. [DOI] [PubMed] [Google Scholar]
- Hausswirth C., Bigard A. X., Guezennec C. Y. Relationships between running mechanics and energy cost of running at the end of a triathlon and a marathon. Int J Sports Med. 1997 Jul;18(5):330–339. doi: 10.1055/s-2007-972642. [DOI] [PubMed] [Google Scholar]
- Hausswirth C., Lehénaff D., Dréano P., Savonen K. Effects of cycling alone or in a sheltered position on subsequent running performance during a triathlon. Med Sci Sports Exerc. 1999 Apr;31(4):599–604. doi: 10.1097/00005768-199904000-00018. [DOI] [PubMed] [Google Scholar]
- Hue O., Le Gallais D., Chollet D., Boussana A., Préfaut C. The influence of prior cycling on biomechanical and cardiorespiratory response profiles during running in triathletes. Eur J Appl Physiol Occup Physiol. 1998;77(1-2):98–105. doi: 10.1007/s004210050306. [DOI] [PubMed] [Google Scholar]
- Kohrt W. M., Morgan D. W., Bates B., Skinner J. S. Physiological responses of triathletes to maximal swimming, cycling, and running. Med Sci Sports Exerc. 1987 Feb;19(1):51–55. [PubMed] [Google Scholar]
- Kreider R. B., Boone T., Thompson W. R., Burkes S., Cortes C. W. Cardiovascular and thermal responses of triathlon performance. Med Sci Sports Exerc. 1988 Aug;20(4):385–390. doi: 10.1249/00005768-198808000-00010. [DOI] [PubMed] [Google Scholar]
- Lepers R., Bigard A. X., Diard J. P., Gouteyron J. F., Guezennec C. Y. Posture control after prolonged exercise. Eur J Appl Physiol Occup Physiol. 1997;76(1):55–61. doi: 10.1007/s004210050212. [DOI] [PubMed] [Google Scholar]
- Margaritis I. Facteurs limitants de la performance en triathlon. Can J Appl Physiol. 1996 Feb;21(1):1–15. doi: 10.1139/h96-001. [DOI] [PubMed] [Google Scholar]
- Miura H., Kitagawa K., Ishiko T. Economy during a simulated laboratory test triathlon is highly related to Olympic distance triathlon. Int J Sports Med. 1997 May;18(4):276–280. doi: 10.1055/s-2007-972633. [DOI] [PubMed] [Google Scholar]
- Nicol C., Komi P. V., Horita T., Kyröläinen H., Takala T. E. Reduced stretch-reflex sensitivity after exhausting stretch-shortening cycle exercise. Eur J Appl Physiol Occup Physiol. 1996;72(5-6):401–409. doi: 10.1007/BF00242268. [DOI] [PubMed] [Google Scholar]
- O'Toole M. L., Douglas P. S. Applied physiology of triathlon. Sports Med. 1995 Apr;19(4):251–267. doi: 10.2165/00007256-199519040-00003. [DOI] [PubMed] [Google Scholar]
- O'Toole M. L. Training for ultraendurance triathlons. Med Sci Sports Exerc. 1989 Oct;21(5 Suppl):S209–S213. [PubMed] [Google Scholar]
- Palmer G. S., Noakes T. D., Hawley J. A. Effects of steady-state versus stochastic exercise on subsequent cycling performance. Med Sci Sports Exerc. 1997 May;29(5):684–687. doi: 10.1097/00005768-199705000-00015. [DOI] [PubMed] [Google Scholar]
- Ruby B., Robergs R., Leadbetter G., Mermier C., Chick T., Stark D. Cross-training between cycling and running in untrained females. J Sports Med Phys Fitness. 1996 Dec;36(4):246–254. [PubMed] [Google Scholar]
- Sleivert G. G., Rowlands D. S. Physical and physiological factors associated with success in the triathlon. Sports Med. 1996 Jul;22(1):8–18. doi: 10.2165/00007256-199622010-00002. [DOI] [PubMed] [Google Scholar]
- Sleivert G. G., Wenger H. A. Physiological predictors of short-course triathlon performance. Med Sci Sports Exerc. 1993 Jul;25(7):871–876. doi: 10.1249/00005768-199307000-00017. [DOI] [PubMed] [Google Scholar]
- Vleck V. E., Garbutt G. Injury and training characteristics of male Elite, Development Squad, and Club triathletes. Int J Sports Med. 1998 Jan;19(1):38–42. doi: 10.1055/s-2007-971877. [DOI] [PubMed] [Google Scholar]
- Zhou S., Robson S. J., King M. J., Davie A. J. Correlations between short-course triathlon performance and physiological variables determined in laboratory cycle and treadmill tests. J Sports Med Phys Fitness. 1997 Jun;37(2):122–130. [PubMed] [Google Scholar]
- van Rensburg J. P., Kielblock A. J., van der Linde A. Physiologic and biochemical changes during a triathlon competition. Int J Sports Med. 1986 Feb;7(1):30–35. doi: 10.1055/s-2008-1025731. [DOI] [PubMed] [Google Scholar]