Abstract
Objectives—To analyse the slow component of oxygen uptake (O2) in professional cyclists and to determine whether this phenomenon is due to altered neuromuscular activity, as assessed by surface electromyography (EMG).
Methods—The following variables were measured during 20 minute cycle ergometer tests performed at about 80% of O2MAX in nine professional road cyclists (mean (SD) age 26 (2) years; O2max 72.6 (2.2) ml/kg/min): heart rate (HR), gas exchange variables (O2, ventilation (E), tidal volume (VT), breathing frequency (fb), ventilatory equivalents for oxygen and carbon dioxide (E/O2 and E/CO2 respectively), respiratory exchange ratio (RER), and end tidal PO2 and PCO2 (PETO2 and PETCO2 respectively)), blood variables (lactate, pH, and [HCO3-]) and EMG data (root mean from square voltage (rms-EMG) and mean power frequency (MPF)) from the vastus lateralis muscle.
Results—The mean magnitude of the slow component (from the end of the third minute to the end of exercise) was 130 (0.04) ml in 17 minutes or 7.6 ml/min. Significant increases from three minute to end of exercise values were found for the following variables: O2 (p<0.01), HR (p<0.01), E (p<0.05), fb (p<0.01), E/O2 (p<0.05), E/CO2 (p<0.01), PETO2 (p<0.05), and blood lactate (p<0.05). In contrast, rms-EMG and MPF showed no change (p>0.05) throughout the exercise tests.
Conclusions—A significant but small O2 slow component was shown in professional cyclists during constant load heavy exercise. The results suggest that the primary origin of the slow component is not neuromuscular factors in these subjects, at least for exercise intensities up to 80% of O2MAX.
Key Words: pulmonary; gas exchange; electromyography; neuromuscular; fatigue; cyclists
Full Text
The Full Text of this article is available as a PDF (161.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aaron E. A., Seow K. C., Johnson B. D., Dempsey J. A. Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol (1985) 1992 May;72(5):1818–1825. doi: 10.1152/jappl.1992.72.5.1818. [DOI] [PubMed] [Google Scholar]
- Anholm J. D., Johnson R. L., Ramanathan M. Changes in cardiac output during sustained maximal ventilation in humans. J Appl Physiol (1985) 1987 Jul;63(1):181–187. doi: 10.1152/jappl.1987.63.1.181. [DOI] [PubMed] [Google Scholar]
- Arendt-Nielsen L., Mills K. R. The relationship between mean power frequency of the EMG spectrum and muscle fibre conduction velocity. Electroencephalogr Clin Neurophysiol. 1985 Feb;60(2):130–134. doi: 10.1016/0013-4694(85)90019-7. [DOI] [PubMed] [Google Scholar]
- Barstow T. J. Characterization of VO2 kinetics during heavy exercise. Med Sci Sports Exerc. 1994 Nov;26(11):1327–1334. [PubMed] [Google Scholar]
- Billat V. L., Richard R., Binsse V. M., Koralsztein J. P., Haouzi P. The V(O2) slow component for severe exercise depends on type of exercise and is not correlated with time to fatigue. J Appl Physiol (1985) 1998 Dec;85(6):2118–2124. doi: 10.1152/jappl.1998.85.6.2118. [DOI] [PubMed] [Google Scholar]
- Casaburi R., Storer T. W., Ben-Dov I., Wasserman K. Effect of endurance training on possible determinants of VO2 during heavy exercise. J Appl Physiol (1985) 1987 Jan;62(1):199–207. doi: 10.1152/jappl.1987.62.1.199. [DOI] [PubMed] [Google Scholar]
- Coyle E. F., Sidossis L. S., Horowitz J. F., Beltz J. D. Cycling efficiency is related to the percentage of type I muscle fibers. Med Sci Sports Exerc. 1992 Jul;24(7):782–788. [PubMed] [Google Scholar]
- Crow M. T., Kushmerick M. J. Chemical energetics of slow- and fast-twitch muscles of the mouse. J Gen Physiol. 1982 Jan;79(1):147–166. doi: 10.1085/jgp.79.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis J. A. Anaerobic threshold: review of the concept and directions for future research. Med Sci Sports Exerc. 1985 Feb;17(1):6–21. [PubMed] [Google Scholar]
- Dill D. B., Costill D. L. Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol. 1974 Aug;37(2):247–248. doi: 10.1152/jappl.1974.37.2.247. [DOI] [PubMed] [Google Scholar]
- Gaesser G. A. Influence of endurance training and catecholamines on exercise VO2 response. Med Sci Sports Exerc. 1994 Nov;26(11):1341–1346. [PubMed] [Google Scholar]
- Gaesser G. A., Poole D. C. The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev. 1996;24:35–71. [PubMed] [Google Scholar]
- Gaesser G. A., Ward S. A., Baum V. C., Whipp B. J. Effects of infused epinephrine on slow phase of O2 uptake kinetics during heavy exercise in humans. J Appl Physiol (1985) 1994 Nov;77(5):2413–2419. doi: 10.1152/jappl.1994.77.5.2413. [DOI] [PubMed] [Google Scholar]
- González-Alonso J., Calbet J. A., Nielsen B. Muscle blood flow is reduced with dehydration during prolonged exercise in humans. J Physiol. 1998 Dec 15;513(Pt 3):895–905. doi: 10.1111/j.1469-7793.1998.895ba.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagberg J. M., Mullin J. P., Nagle F. J. Oxygen consumption during constant-load exercise. J Appl Physiol Respir Environ Exerc Physiol. 1978 Sep;45(3):381–384. doi: 10.1152/jappl.1978.45.3.381. [DOI] [PubMed] [Google Scholar]
- Hamilton M. T., Gonzalez-Alonso J., Montain S. J., Coyle E. F. Fluid replacement and glucose infusion during exercise prevent cardiovascular drift. J Appl Physiol (1985) 1991 Sep;71(3):871–877. doi: 10.1152/jappl.1991.71.3.871. [DOI] [PubMed] [Google Scholar]
- Helal J. N., Guezennec C. Y., Goubel F. The aerobic-anaerobic transition: re-examination of the threshold concept including an electromyographic approach. Eur J Appl Physiol Occup Physiol. 1987;56(6):643–649. doi: 10.1007/BF00424804. [DOI] [PubMed] [Google Scholar]
- Henson L. C., Poole D. C., Whipp B. J. Fitness as a determinant of oxygen uptake response to constant-load exercise. Eur J Appl Physiol Occup Physiol. 1989;59(1-2):21–28. doi: 10.1007/BF02396575. [DOI] [PubMed] [Google Scholar]
- Horowitz J. F., Sidossis L. S., Coyle E. F. High efficiency of type I muscle fibers improves performance. Int J Sports Med. 1994 Apr;15(3):152–157. doi: 10.1055/s-2007-1021038. [DOI] [PubMed] [Google Scholar]
- Jacobsen D. J., Coast R., Donnelly J. E. The effect of exercise intensity on the slow component of VO2 in persons of different fitness levels. J Sports Med Phys Fitness. 1998 Jun;38(2):124–131. [PubMed] [Google Scholar]
- Luciá A., Hoyos J., Carvajal A., Chicharro J. L. Heart rate response to professional road cycling: the Tour de France. Int J Sports Med. 1999 Apr;20(3):167–172. doi: 10.1055/s-1999-970284. [DOI] [PubMed] [Google Scholar]
- Lucía A., Carvajal A., Calderón F. J., Alfonso A., Chicharro J. L. Breathing pattern in highly competitive cyclists during incremental exercise. Eur J Appl Physiol Occup Physiol. 1999 May;79(6):512–521. doi: 10.1007/s004210050546. [DOI] [PubMed] [Google Scholar]
- Lucía A., Pardo J., Durántez A., Hoyos J., Chicharro J. L. Physiological differences between professional and elite road cyclists. Int J Sports Med. 1998 Jul;19(5):342–348. doi: 10.1055/s-2007-971928. [DOI] [PubMed] [Google Scholar]
- Lucía A., Sánchez O., Carvajal A., Chicharro J. L. Analysis of the aerobic-anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. Br J Sports Med. 1999 Jun;33(3):178–185. doi: 10.1136/bjsm.33.3.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moritani T., Muro M. Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. Eur J Appl Physiol Occup Physiol. 1987;56(3):260–265. doi: 10.1007/BF00690890. [DOI] [PubMed] [Google Scholar]
- Nagata A., Muro M., Moritani T., Yoshida T. Anaerobic threshold determination by blood lactate and myoelectric signals. Jpn J Physiol. 1981;31(4):585–597. doi: 10.2170/jjphysiol.31.585. [DOI] [PubMed] [Google Scholar]
- Poole D. C., Gladden L. B., Kurdak S., Hogan M. C. L-(+)-lactate infusion into working dog gastrocnemius: no evidence lactate per se mediates VO2 slow component. J Appl Physiol (1985) 1994 Feb;76(2):787–792. doi: 10.1152/jappl.1994.76.2.787. [DOI] [PubMed] [Google Scholar]
- Poole D. C., Schaffartzik W., Knight D. R., Derion T., Kennedy B., Guy H. J., Prediletto R., Wagner P. D. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans. J Appl Physiol (1985) 1991 Oct;71(4):1245–1260. doi: 10.1152/jappl.1991.71.4.1245. [DOI] [PubMed] [Google Scholar]
- Poole D. C., Ward S. A., Whipp B. J. The effects of training on the metabolic and respiratory profile of high-intensity cycle ergometer exercise. Eur J Appl Physiol Occup Physiol. 1990;59(6):421–429. doi: 10.1007/BF02388623. [DOI] [PubMed] [Google Scholar]
- Roston W. L., Whipp B. J., Davis J. A., Cunningham D. A., Effros R. M., Wasserman K. Oxygen uptake kinetics and lactate concentration during exercise in humans. Am Rev Respir Dis. 1987 May;135(5):1080–1084. doi: 10.1164/arrd.1987.135.5.1080. [DOI] [PubMed] [Google Scholar]
- Shinohara M., Moritani T. Increase in neuromuscular activity and oxygen uptake during heavy exercise. Ann Physiol Anthropol. 1992 May;11(3):257–262. [PubMed] [Google Scholar]
- Taylor A. D., Bronks R. Electromyographic correlates of the transition from aerobic to anaerobic metabolism in treadmill running. Eur J Appl Physiol Occup Physiol. 1994;69(6):508–515. doi: 10.1007/BF00239868. [DOI] [PubMed] [Google Scholar]
- Weltman A., Snead D., Stein P., Seip R., Schurrer R., Rutt R., Weltman J. Reliability and validity of a continuous incremental treadmill protocol for the determination of lactate threshold, fixed blood lactate concentrations, and VO2max. Int J Sports Med. 1990 Feb;11(1):26–32. doi: 10.1055/s-2007-1024757. [DOI] [PubMed] [Google Scholar]
- Westerlind K. C., Byrnes W. C., Mazzeo R. S. A comparison of the oxygen drift in downhill vs. level running. J Appl Physiol (1985) 1992 Feb;72(2):796–800. doi: 10.1152/jappl.1992.72.2.796. [DOI] [PubMed] [Google Scholar]
- Whipp B. J. The slow component of O2 uptake kinetics during heavy exercise. Med Sci Sports Exerc. 1994 Nov;26(11):1319–1326. [PubMed] [Google Scholar]
- Whipp B. J., Ward S. A. Determinants and control of breathing during muscular exercise. Br J Sports Med. 1998 Sep;32(3):199–211. doi: 10.1136/bjsm.32.3.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Womack C. J., Davis S. E., Blumer J. L., Barrett E., Weltman A. L., Gaesser G. A. Slow component of O2 uptake during heavy exercise: adaptation to endurance training. J Appl Physiol (1985) 1995 Sep;79(3):838–845. doi: 10.1152/jappl.1995.79.3.838. [DOI] [PubMed] [Google Scholar]