Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Nov;65(11):4367–4377. doi: 10.1128/iai.65.11.4367-4377.1997

A protective epitope of Moraxella catarrhalis is encoded by two different genes.

C Aebi 1, I Maciver 1, J L Latimer 1, L D Cope 1, M K Stevens 1, S E Thomas 1, G H McCracken Jr 1, E J Hansen 1
PMCID: PMC175628  PMID: 9353007

Abstract

The high-molecular-weight UspA protein of Moraxella catarrhalis has been described as being both present on the surface of all M. catarrhalis disease isolates examined to date and a target for a monoclonal antibody (MAb 17C7) which enhanced pulmonary clearance of this organism in a mouse model system (M. E. Helminen et al., J. Infect. Dis. 170:867-872, 1994). A recombinant bacteriophage that formed plaques which bound MAb 17C7 was shown to contain a M. catarrhalis gene, designated uspA1, that encoded a protein with a calculated molecular weight of 88,271. Characterization of an isogenic uspA1 mutant revealed that elimination of expression of UspA1 did not eliminate the reactivity of M. catarrhalis with MAb 17C7. In addition, N-terminal amino acid analysis of internal peptides derived from native UspA protein and Southern blot analysis of M. catarrhalis chromosomal DNA suggested the existence of a second UspA-like protein. A combination of epitope mapping and ligation-based PCR methods identified a second M. catarrhalis gene, designated uspA2, which also encoded the MAb 17C7-reactive epitope. The UspA2 protein had a calculated molecular weight of 62,483. Both the isogenic uspA1 mutant and an isogenic uspA2 mutant possessed the ability to express a very-high-molecular-weight antigen that bound MAb 17C7. Southern blot analysis indicated that disease isolates of M. catarrhalis likely possess both uspA1 and uspA2 genes. Both UspA1 and UspA2 most closely resembled adhesins produced by other bacterial pathogens.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdullah K. M., Lo R. Y., Mellors A. Cloning, nucleotide sequence, and expression of the Pasteurella haemolytica A1 glycoprotease gene. J Bacteriol. 1991 Sep;173(18):5597–5603. doi: 10.1128/jb.173.18.5597-5603.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Bartos L. C., Murphy T. F. Comparison of the outer membrane proteins of 50 strains of Branhamella catarrhalis. J Infect Dis. 1988 Oct;158(4):761–765. doi: 10.1093/infdis/158.4.761. [DOI] [PubMed] [Google Scholar]
  4. Bliska J. B., Copass M. C., Falkow S. The Yersinia pseudotuberculosis adhesin YadA mediates intimate bacterial attachment to and entry into HEp-2 cells. Infect Immun. 1993 Sep;61(9):3914–3921. doi: 10.1128/iai.61.9.3914-3921.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bluestone C. D. Otitis media and sinusitis in children. Role of Branhamella catarrhalis. Drugs. 1986;31 (Suppl 3):132–141. doi: 10.2165/00003495-198600313-00029. [DOI] [PubMed] [Google Scholar]
  6. Catlin B. W. Branhamella catarrhalis: an organism gaining respect as a pathogen. Clin Microbiol Rev. 1990 Oct;3(4):293–320. doi: 10.1128/cmr.3.4.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen D., McMichael J. C., VanDerMeid K. R., Hahn D., Mininni T., Cowell J., Eldridge J. Evaluation of purified UspA from Moraxella catarrhalis as a vaccine in a murine model after active immunization. Infect Immun. 1996 Jun;64(6):1900–1905. doi: 10.1128/iai.64.6.1900-1905.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. China B., N'Guyen B. T., de Bruyere M., Cornelis G. R. Role of YadA in resistance of Yersinia enterocolitica to phagocytosis by human polymorphonuclear leukocytes. Infect Immun. 1994 Apr;62(4):1275–1281. doi: 10.1128/iai.62.4.1275-1281.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. China B., Sory M. P., N'Guyen B. T., De Bruyere M., Cornelis G. R. Role of the YadA protein in prevention of opsonization of Yersinia enterocolitica by C3b molecules. Infect Immun. 1993 Aug;61(8):3129–3136. doi: 10.1128/iai.61.8.3129-3136.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Faden H. Comparison of the local immune response to nontypable Haemophilus influenzae (nHI) and Moraxella catarrhalis (MC) during otitis media. Adv Exp Med Biol. 1995;371B:733–736. [PubMed] [Google Scholar]
  12. Faden H., Harabuchi Y., Hong J. J. Epidemiology of Moraxella catarrhalis in children during the first 2 years of life: relationship to otitis media. J Infect Dis. 1994 Jun;169(6):1312–1317. doi: 10.1093/infdis/169.6.1312. [DOI] [PubMed] [Google Scholar]
  13. Faden H., Hong J. J., Pahade N. Immune response to Moraxella catarrhalis in children with otitis media: opsonophagocytosis with antigen-coated latex beads. Ann Otol Rhinol Laryngol. 1994 Jul;103(7):522–524. doi: 10.1177/000348949410300704. [DOI] [PubMed] [Google Scholar]
  14. Faden H., Hong J., Murphy T. Immune response to outer membrane antigens of Moraxella catarrhalis in children with otitis media. Infect Immun. 1992 Sep;60(9):3824–3829. doi: 10.1128/iai.60.9.3824-3829.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Geme J. W., 3rd, Cutter D. Evidence that surface fibrils expressed by Haemophilus influenzae type b promote attachment to human epithelial cells. Mol Microbiol. 1995 Jan;15(1):77–85. doi: 10.1111/j.1365-2958.1995.tb02222.x. [DOI] [PubMed] [Google Scholar]
  16. Giebink G. S. The microbiology of otitis media. Pediatr Infect Dis J. 1989 Jan;8(1 Suppl):S18–S20. [PubMed] [Google Scholar]
  17. Gish W., States D. J. Identification of protein coding regions by database similarity search. Nat Genet. 1993 Mar;3(3):266–272. doi: 10.1038/ng0393-266. [DOI] [PubMed] [Google Scholar]
  18. Goldblatt D., Scadding G. K., Lund V. J., Wade A. M., Turner M. W., Pandey J. P. Association of Gm allotypes with the antibody response to the outer membrane proteins of a common upper respiratory tract organism, Moraxella catarrhalis. J Immunol. 1994 Dec 1;153(11):5316–5320. [PubMed] [Google Scholar]
  19. Goldblatt D., Seymour N. D., Levinsky R. J., Turner M. W. An enzyme-linked immunosorbent assay for the determination of human IgG subclass antibodies directed against Branhamella catarrhalis. J Immunol Methods. 1990 Apr 17;128(2):219–225. doi: 10.1016/0022-1759(90)90213-f. [DOI] [PubMed] [Google Scholar]
  20. Goldblatt D., Turner M. W., Levinsky R. J. Branhamella catarrhalis: antigenic determinants and the development of the IgG subclass response in childhood. J Infect Dis. 1990 Nov;162(5):1128–1135. doi: 10.1093/infdis/162.5.1128. [DOI] [PubMed] [Google Scholar]
  21. Gray-Owen S. D., Loosmore S., Schryvers A. B. Identification and characterization of genes encoding the human transferrin-binding proteins from Haemophilus influenzae. Infect Immun. 1995 Apr;63(4):1201–1210. doi: 10.1128/iai.63.4.1201-1210.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Gulig P. A., McCracken G. H., Jr, Frisch C. F., Johnston K. H., Hansen E. J. Antibody response of infants to cell surface-exposed outer membrane proteins of Haemophilus influenzae type b after systemic Haemophilus disease. Infect Immun. 1982 Jul;37(1):82–88. doi: 10.1128/iai.37.1.82-88.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gulig P. A., Patrick C. C., Hermanstorfer L., McCracken G. H., Jr, Hansen E. J. Conservation of epitopes in the oligosaccharide portion of the lipooligosaccharide of Haemophilus influenzae type b. Infect Immun. 1987 Mar;55(3):513–520. doi: 10.1128/iai.55.3.513-520.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hager H., Verghese A., Alvarez S., Berk S. L. Branhamella catarrhalis respiratory infections. Rev Infect Dis. 1987 Nov-Dec;9(6):1140–1149. doi: 10.1093/clinids/9.6.1140. [DOI] [PubMed] [Google Scholar]
  25. Hansen E. J., Latimer J. L., Thomas S. E., Helminen M., Albritton W. L., Radolf J. D. Use of electroporation to construct isogenic mutants of Haemophilus ducreyi. J Bacteriol. 1992 Aug;174(16):5442–5449. doi: 10.1128/jb.174.16.5442-5449.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hansen E. J., Pelzel S. E., Orth K., Moomaw C. R., Radolf J. D., Slaughter C. A. Structural and antigenic conservation of the P2 porin protein among strains of Haemophilus influenzae type b. Infect Immun. 1989 Nov;57(11):3270–3275. doi: 10.1128/iai.57.11.3270-3275.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Helminen M. E., Maciver I., Latimer J. L., Cope L. D., McCracken G. H., Jr, Hansen E. J. A major outer membrane protein of Moraxella catarrhalis is a target for antibodies that enhance pulmonary clearance of the pathogen in an animal model. Infect Immun. 1993 May;61(5):2003–2010. doi: 10.1128/iai.61.5.2003-2010.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Helminen M. E., Maciver I., Latimer J. L., Klesney-Tait J., Cope L. D., Paris M., McCracken G. H., Jr, Hansen E. J. A large, antigenically conserved protein on the surface of Moraxella catarrhalis is a target for protective antibodies. J Infect Dis. 1994 Oct;170(4):867–872. doi: 10.1093/infdis/170.4.867. [DOI] [PubMed] [Google Scholar]
  29. Helminen M. E., Maciver I., Paris M., Latimer J. L., Lumbley S. L., Cope L. D., McCracken G. H., Jr, Hansen E. J. A mutation affecting expression of a major outer membrane protein of Moraxella catarrhalis alters serum resistance and survival in vivo. J Infect Dis. 1993 Nov;168(5):1194–1201. doi: 10.1093/infdis/168.5.1194. [DOI] [PubMed] [Google Scholar]
  30. Hol C., Verduin C. M., Van Dijke E. E., Verhoef J., Fleer A., van Dijk H. Complement resistance is a virulence factor of Branhamella (Moraxella) catarrhalis. FEMS Immunol Med Microbiol. 1995 Jun;11(3):207–211. doi: 10.1111/j.1574-695X.1995.tb00118.x. [DOI] [PubMed] [Google Scholar]
  31. Hsiao C. B., Sethi S., Murphy T. F. Outer membrane protein CD of Branhamella catarrhalis: sequence conservation in strains recovered from the human respiratory tract. Microb Pathog. 1995 Oct;19(4):215–225. doi: 10.1016/s0882-4010(95)90272-4. [DOI] [PubMed] [Google Scholar]
  32. Kapperud G., Namork E., Skurnik M., Nesbakken T. Plasmid-mediated surface fibrillae of Yersinia pseudotuberculosis and Yersinia enterocolitica: relationship to the outer membrane protein YOP1 and possible importance for pathogenesis. Infect Immun. 1987 Sep;55(9):2247–2254. doi: 10.1128/iai.55.9.2247-2254.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kimura A., Gulig P. A., McCracken G. H., Jr, Loftus T. A., Hansen E. J. A minor high-molecular-weight outer membrane protein of Haemophilus influenzae type b is a protective antigen. Infect Immun. 1985 Jan;47(1):253–259. doi: 10.1128/iai.47.1.253-259.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Klesney-Tait J., Hiltke T. J., Maciver I., Spinola S. M., Radolf J. D., Hansen E. J. The major outer membrane protein of Haemophilus ducreyi consists of two OmpA homologs. J Bacteriol. 1997 Mar;179(5):1764–1773. doi: 10.1128/jb.179.5.1764-1773.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Klingman K. L., Murphy T. F. Purification and characterization of a high-molecular-weight outer membrane protein of Moraxella (Branhamella) catarrhalis. Infect Immun. 1994 Apr;62(4):1150–1155. doi: 10.1128/iai.62.4.1150-1155.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Klingman K. L., Pye A., Murphy T. F., Hill S. L. Dynamics of respiratory tract colonization by Branhamella catarrhalis in bronchiectasis. Am J Respir Crit Care Med. 1995 Sep;152(3):1072–1078. doi: 10.1164/ajrccm.152.3.7663786. [DOI] [PubMed] [Google Scholar]
  37. Kovatch A. L., Wald E. R., Michaels R. H. beta-Lactamase-producing Branhamella catarrhalis causing otitis media in children. J Pediatr. 1983 Feb;102(2):261–264. doi: 10.1016/s0022-3476(83)80537-x. [DOI] [PubMed] [Google Scholar]
  38. Kroll J. S., Langford P. R., Saah J. R., Loynds B. M. Molecular and genetic characterization of superoxide dismutase in Haemophilus influenzae type b. Mol Microbiol. 1993 Nov;10(4):839–848. doi: 10.1111/j.1365-2958.1993.tb00954.x. [DOI] [PubMed] [Google Scholar]
  39. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  40. Lachica R. V., Zink D. L., Ferris W. R. Association of fibril structure formation with cell surface properties of Yersinia enterocolitica. Infect Immun. 1984 Oct;46(1):272–275. doi: 10.1128/iai.46.1.272-275.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mack D., Heesemann J., Laufs R. Characterization of different oligomeric species of the Yersinia enterocolitica outer membrane protein YadA. Med Microbiol Immunol. 1994 Sep;183(4):217–227. doi: 10.1007/BF00194174. [DOI] [PubMed] [Google Scholar]
  42. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  43. Maxon M. E., Wigboldus J., Brot N., Weissbach H. Structure-function studies on Escherichia coli MetR protein, a putative prokaryotic leucine zipper protein. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7076–7079. doi: 10.1073/pnas.87.18.7076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. McLeod D. T., Ahmad F., Capewell S., Croughan M. J., Calder M. A., Seaton A. Increase in bronchopulmonary infection due to branhamella catarrhalis. Br Med J (Clin Res Ed) 1986 Apr 26;292(6528):1103–1105. doi: 10.1136/bmj.292.6528.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Moxon E. R., Wilson R. The role of Haemophilus influenzae in the pathogenesis of pneumonia. Rev Infect Dis. 1991 May-Jun;13 (Suppl 6):S518–S527. doi: 10.1093/clinids/13.supplement_6.s518. [DOI] [PubMed] [Google Scholar]
  46. Murphy T. F., Bartos L. C. Surface-exposed and antigenically conserved determinants of outer membrane proteins of Branhamella catarrhalis. Infect Immun. 1989 Oct;57(10):2938–2941. doi: 10.1128/iai.57.10.2938-2941.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Murphy T. F., Kirkham C., Lesse A. J. The major heat-modifiable outer membrane protein CD is highly conserved among strains of Branhamella catarrhalis. Mol Microbiol. 1993 Oct;10(1):87–97. doi: 10.1111/j.1365-2958.1993.tb00906.x. [DOI] [PubMed] [Google Scholar]
  48. Murphy T. F., Loeb M. R. Isolation of the outer membrane of Branhamella catarrhalis. Microb Pathog. 1989 Mar;6(3):159–174. doi: 10.1016/0882-4010(89)90066-1. [DOI] [PubMed] [Google Scholar]
  49. Nicotra B., Rivera M., Luman J. I., Wallace R. J., Jr Branhamella catarrhalis as a lower respiratory tract pathogen in patients with chronic lung disease. Arch Intern Med. 1986 May;146(5):890–893. [PubMed] [Google Scholar]
  50. Pilz D., Vocke T., Heesemann J., Brade V. Mechanism of YadA-mediated serum resistance of Yersinia enterocolitica serotype O3. Infect Immun. 1992 Jan;60(1):189–195. doi: 10.1128/iai.60.1.189-195.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Post J. C., Preston R. A., Aul J. J., Larkins-Pettigrew M., Rydquist-White J., Anderson K. W., Wadowsky R. M., Reagan D. R., Walker E. S., Kingsley L. A. Molecular analysis of bacterial pathogens in otitis media with effusion. JAMA. 1995 May 24;273(20):1598–1604. [PubMed] [Google Scholar]
  52. Postle K., Good R. F. A bidirectional rho-independent transcription terminator between the E. coli tonB gene and an opposing gene. Cell. 1985 Jun;41(2):577–585. doi: 10.1016/s0092-8674(85)80030-1. [DOI] [PubMed] [Google Scholar]
  53. Schulze-Koops H., Burkhardt H., Heesemann J., Kirsch T., Swoboda B., Bull C., Goodman S., Emmrich F. Outer membrane protein YadA of enteropathogenic yersiniae mediates specific binding to cellular but not plasma fibronectin. Infect Immun. 1993 Jun;61(6):2513–2519. doi: 10.1128/iai.61.6.2513-2519.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Schulze-Koops H., Burkhardt H., Heesemann J., von der Mark K., Emmrich F. Plasmid-encoded outer membrane protein YadA mediates specific binding of enteropathogenic yersiniae to various types of collagen. Infect Immun. 1992 Jun;60(6):2153–2159. doi: 10.1128/iai.60.6.2153-2159.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Shine J., Dalgarno L. Determinant of cistron specificity in bacterial ribosomes. Nature. 1975 Mar 6;254(5495):34–38. doi: 10.1038/254034a0. [DOI] [PubMed] [Google Scholar]
  56. Shurin P. A., Marchant C. D., Kim C. H., Van Hare G. F., Johnson C. E., Tutihasi M. A., Knapp L. J. Emergence of beta-lactamase-producing strains of Branhamella catarrhalis as important agents of acute otitis media. Pediatr Infect Dis. 1983 Jan-Feb;2(1):34–38. doi: 10.1097/00006454-198301000-00009. [DOI] [PubMed] [Google Scholar]
  57. Skurnik M., Bölin I., Heikkinen H., Piha S., Wolf-Watz H. Virulence plasmid-associated autoagglutination in Yersinia spp. J Bacteriol. 1984 Jun;158(3):1033–1036. doi: 10.1128/jb.158.3.1033-1036.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Skurnik M., Wolf-Watz H. Analysis of the yopA gene encoding the Yop1 virulence determinants of Yersinia spp. Mol Microbiol. 1989 Apr;3(4):517–529. doi: 10.1111/j.1365-2958.1989.tb00198.x. [DOI] [PubMed] [Google Scholar]
  59. St Geme J. W., 3rd, Cutter D., Barenkamp S. J. Characterization of the genetic locus encoding Haemophilus influenzae type b surface fibrils. J Bacteriol. 1996 Nov;178(21):6281–6287. doi: 10.1128/jb.178.21.6281-6287.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Stoker N. G., Fairweather N. F., Spratt B. G. Versatile low-copy-number plasmid vectors for cloning in Escherichia coli. Gene. 1982 Jun;18(3):335–341. doi: 10.1016/0378-1119(82)90172-x. [DOI] [PubMed] [Google Scholar]
  61. Tamm A., Tarkkanen A. M., Korhonen T. K., Kuusela P., Toivanen P., Skurnik M. Hydrophobic domains affect the collagen-binding specificity and surface polymerization as well as the virulence potential of the YadA protein of Yersinia enterocolitica. Mol Microbiol. 1993 Dec;10(5):995–1011. doi: 10.1111/j.1365-2958.1993.tb00971.x. [DOI] [PubMed] [Google Scholar]
  62. Tertti R., Skurnik M., Vartio T., Kuusela P. Adhesion protein YadA of Yersinia species mediates binding of bacteria to fibronectin. Infect Immun. 1992 Jul;60(7):3021–3024. doi: 10.1128/iai.60.7.3021-3024.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Unhanand M., Maciver I., Ramilo O., Arencibia-Mireles O., Argyle J. C., McCracken G. H., Jr, Hansen E. J. Pulmonary clearance of Moraxella catarrhalis in an animal model. J Infect Dis. 1992 Apr;165(4):644–650. doi: 10.1093/infdis/165.4.644. [DOI] [PubMed] [Google Scholar]
  64. Wald E. R., Rohn D. D., Chiponis D. M., Blatter M. M., Reisinger K. S., Wucher F. P. Quantitative cultures of middle-ear fluid in acute otitis media. J Pediatr. 1983 Feb;102(2):259–261. doi: 10.1016/s0022-3476(83)80536-8. [DOI] [PubMed] [Google Scholar]
  65. Wright P. W., Wallace R. J., Jr, Shepherd J. R. A descriptive study of 42 cases of Branhamella catarrhalis pneumonia. Am J Med. 1990 May 14;88(5A):2S–8S. doi: 10.1016/0002-9343(90)90253-a. [DOI] [PubMed] [Google Scholar]
  66. Zaleska M., Lounatmaa K., Nurminen M., Wahlström E., Mäkelä P. H. A novel virulence-associated cell surface structure composed of 47-kd protein subunits in Yersinia enterocolitica. EMBO J. 1985 Apr;4(4):1013–1018. doi: 10.1002/j.1460-2075.1985.tb03732.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Zhang H., Scholl R., Browse J., Somerville C. Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Res. 1988 Feb 11;16(3):1220–1220. doi: 10.1093/nar/16.3.1220. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES