Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Nov;65(11):4419–4423. doi: 10.1128/iai.65.11.4419-4423.1997

Immunization with a recombinant C-terminal fragment of Plasmodium yoelii merozoite surface protein 1 protects mice against homologous but not heterologous P. yoelii sporozoite challenge.

L Rénia 1, I T Ling 1, M Marussig 1, F Miltgen 1, A A Holder 1, D Mazier 1
PMCID: PMC175635  PMID: 9353014

Abstract

It has been reported previously that immunization with recombinant protein containing the two epidermal growth factor (EGF)-like modules from merozoite surface protein 1 (MSP-1) of Plasmodium yoelii (strain YM) protects mice against a lethal blood-stage challenge with the same parasite strain. Since MSP-1 is expressed in both liver- and blood-stage schizonts and on the surface of merozoites, we evaluated the effectiveness of immunization with recombinant proteins containing either the individual or the two combined EGF-like modules in producing a protective response against a sporozoite challenge. The recombinant protein expressing the combined EGF-like modules of the YM strain protected mice against a homologous sporozoite challenge, and sterile protection, as defined by the absence of detectable blood-stage parasites, was observed in the majority of the mice. In contrast, mice immunized with recombinant P. yoelii YM MSP-1 were not protected against a heterologous challenge with sporozoites from strain 265 BY of P. yoelii. The lack of protection may be explained by differences identified in the amino acid sequences of MSP-1 for the two strains. A recombinant protein containing the two EGF-like modules of MSP-1 from P. yoelii 265 BY was produced and used to immunize mice. These mice were protected against a homologous challenge with sporozoites of P. yoelii 265 BY. The results suggest that a recombinant MSP-1 has potential as a vaccine against malaria, but its efficacy may be limited by sequence polymorphism and selection of variants.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aley S. B., Barnwell J. W., Bates M. D., Collins W. E., Hollingdale M. R. Plasmodium vivax: exoerythrocytic schizonts recognized by monoclonal antibodies against blood-stage schizonts. Exp Parasitol. 1987 Oct;64(2):188–194. doi: 10.1016/0014-4894(87)90142-1. [DOI] [PubMed] [Google Scholar]
  2. Audibert F. M., Lise L. D. Adjuvants: current status, clinical perspectives and future prospects. Immunol Today. 1993 Jun;14(6):281–284. doi: 10.1016/0167-5699(93)90046-N. [DOI] [PubMed] [Google Scholar]
  3. Blackman M. J., Ling I. T., Nicholls S. C., Holder A. A. Proteolytic processing of the Plasmodium falciparum merozoite surface protein-1 produces a membrane-bound fragment containing two epidermal growth factor-like domains. Mol Biochem Parasitol. 1991 Nov;49(1):29–33. doi: 10.1016/0166-6851(91)90127-r. [DOI] [PubMed] [Google Scholar]
  4. Blackman M. J., Scott-Finnigan T. J., Shai S., Holder A. A. Antibodies inhibit the protease-mediated processing of a malaria merozoite surface protein. J Exp Med. 1994 Jul 1;180(1):389–393. doi: 10.1084/jem.180.1.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bouharoun-Tayoun H., Attanath P., Sabchareon A., Chongsuphajaisiddhi T., Druilhe P. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med. 1990 Dec 1;172(6):1633–1641. doi: 10.1084/jem.172.6.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Burghaus P. A., Wellde B. T., Hall T., Richards R. L., Egan A. F., Riley E. M., Ballou W. R., Holder A. A. Immunization of Aotus nancymai with recombinant C terminus of Plasmodium falciparum merozoite surface protein 1 in liposomes and alum adjuvant does not induce protection against a challenge infection. Infect Immun. 1996 Sep;64(9):3614–3619. doi: 10.1128/iai.64.9.3614-3619.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burns J. M., Jr, Majarian W. R., Young J. F., Daly T. M., Long C. A. A protective monoclonal antibody recognizes an epitope in the carboxyl-terminal cysteine-rich domain in the precursor of the major merozoite surface antigen of the rodent malarial parasite, Plasmodium yoelii. J Immunol. 1989 Oct 15;143(8):2670–2676. [PubMed] [Google Scholar]
  8. Burns J. M., Jr, Parke L. A., Daly T. M., Cavacini L. A., Weidanz W. P., Long C. A. A protective monoclonal antibody recognizes a variant-specific epitope in the precursor of the major merozoite surface antigen of the rodent malarial parasite Plasmodium yoelii. J Immunol. 1989 Apr 15;142(8):2835–2840. [PubMed] [Google Scholar]
  9. Calvo P. A., Daly T. M., Long C. A. Plasmodium yoelii: the role of the individual epidermal growth factor-like domains of the merozoite surface protein-1 in protection from malaria. Exp Parasitol. 1996 Jan;82(1):54–64. doi: 10.1006/expr.1996.0007. [DOI] [PubMed] [Google Scholar]
  10. Chang S. P., Gibson H. L., Lee-Ng C. T., Barr P. J., Hui G. S. A carboxyl-terminal fragment of Plasmodium falciparum gp195 expressed by a recombinant baculovirus induces antibodies that completely inhibit parasite growth. J Immunol. 1992 Jul 15;149(2):548–555. [PubMed] [Google Scholar]
  11. Cooper J. A. Merozoite surface antigen-I of plasmodium. Parasitol Today. 1993 Feb;9(2):50–54. doi: 10.1016/0169-4758(93)90031-a. [DOI] [PubMed] [Google Scholar]
  12. Daly T. M., Burns J. M., Jr, Long C. A. Comparison of the carboxy-terminal, cysteine-rich domain of the merozoite surface protein-1 from several strains of Plasmodium yoelii. Mol Biochem Parasitol. 1992 Jun;52(2):279–282. doi: 10.1016/0166-6851(92)90061-n. [DOI] [PubMed] [Google Scholar]
  13. Daly T. M., Long C. A. A recombinant 15-kilodalton carboxyl-terminal fragment of Plasmodium yoelii yoelii 17XL merozoite surface protein 1 induces a protective immune response in mice. Infect Immun. 1993 Jun;61(6):2462–2467. doi: 10.1128/iai.61.6.2462-2467.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Daly T. M., Long C. A. Humoral response to a carboxyl-terminal region of the merozoite surface protein-1 plays a predominant role in controlling blood-stage infection in rodent malaria. J Immunol. 1995 Jul 1;155(1):236–243. [PubMed] [Google Scholar]
  15. Egan A. F., Morris J., Barnish G., Allen S., Greenwood B. M., Kaslow D. C., Holder A. A., Riley E. M. Clinical immunity to Plasmodium falciparum malaria is associated with serum antibodies to the 19-kDa C-terminal fragment of the merozoite surface antigen, PfMSP-1. J Infect Dis. 1996 Mar;173(3):765–769. doi: 10.1093/infdis/173.3.765. [DOI] [PubMed] [Google Scholar]
  16. Ferreira A., Schofield L., Enea V., Schellekens H., van der Meide P., Collins W. E., Nussenzweig R. S., Nussenzweig V. Inhibition of development of exoerythrocytic forms of malaria parasites by gamma-interferon. Science. 1986 May 16;232(4752):881–884. doi: 10.1126/science.3085218. [DOI] [PubMed] [Google Scholar]
  17. Holder A. A., Blackman M. J. What is the function of MSP-I on the malaria merozoite? Parasitol Today. 1994 May;10(5):182–184. doi: 10.1016/0169-4758(94)90025-6. [DOI] [PubMed] [Google Scholar]
  18. Holder A. A., Freeman R. R. Biosynthesis and processing of a Plasmodium falciparum schizont antigen recognized by immune serum and a monoclonal antibody. J Exp Med. 1982 Nov 1;156(5):1528–1538. doi: 10.1084/jem.156.5.1528. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jongwutiwes S., Tanabe K., Kanbara H. Sequence conservation in the C-terminal part of the precursor to the major merozoite surface proteins (MSP1) of Plasmodium falciparum from field isolates. Mol Biochem Parasitol. 1993 May;59(1):95–100. doi: 10.1016/0166-6851(93)90010-u. [DOI] [PubMed] [Google Scholar]
  20. Kang Y., Long C. A. Sequence heterogeneity of the C-terminal, Cys-rich region of the merozoite surface protein-1 (MSP-1) in field samples of Plasmodium falciparum. Mol Biochem Parasitol. 1995 Jul;73(1-2):103–110. doi: 10.1016/0166-6851(95)00102-7. [DOI] [PubMed] [Google Scholar]
  21. Karr R. W., Yu W., Watts R., Evans K. S., Celis E. The role of polymorphic HLA-DR beta chain residues in presentation of viral antigens to T cells. J Exp Med. 1990 Jul 1;172(1):273–283. doi: 10.1084/jem.172.1.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lewis A. P. Cloning and analysis of the gene encoding the 230-kilodalton merozoite surface antigen of Plasmodium yoelii. Mol Biochem Parasitol. 1989 Oct;36(3):271–282. doi: 10.1016/0166-6851(89)90175-8. [DOI] [PubMed] [Google Scholar]
  23. Ling I. T., Ogun S. A., Holder A. A. Immunization against malaria with a recombinant protein. Parasite Immunol. 1994 Feb;16(2):63–67. doi: 10.1111/j.1365-3024.1994.tb00324.x. [DOI] [PubMed] [Google Scholar]
  24. Ling I. T., Ogun S. A., Holder A. A. The combined epidermal growth factor-like modules of Plasmodium yoelii Merozoite Surface Protein-1 are required for a protective immune response to the parasite. Parasite Immunol. 1995 Aug;17(8):425–433. doi: 10.1111/j.1365-3024.1995.tb00910.x. [DOI] [PubMed] [Google Scholar]
  25. Lyon J. A., Thomas A. W., Hall T., Chulay J. D. Specificities of antibodies that inhibit merozoite dispersal from malaria-infected erythrocytes. Mol Biochem Parasitol. 1989 Aug;36(1):77–85. doi: 10.1016/0166-6851(89)90203-x. [DOI] [PubMed] [Google Scholar]
  26. Majarian W. R., Daly T. M., Weidanz W. P., Long C. A. Passive immunization against murine malaria with an IgG3 monoclonal antibody. J Immunol. 1984 Jun;132(6):3131–3137. [PubMed] [Google Scholar]
  27. Mazier D., Rénia L., Nussler A., Pied S., Marussig M., Goma J., Grillot D., Miltgen F., Drapier J. C., Corradin G. Hepatic phase of malaria is the target of cellular mechanisms induced by the previous and the subsequent stages. A crucial role for liver nonparenchymal cells. Immunol Lett. 1990 Aug;25(1-3):65–70. doi: 10.1016/0165-2478(90)90093-6. [DOI] [PubMed] [Google Scholar]
  28. Mellouk S., Maheshwari R. K., Rhodes-Feuillette A., Beaudoin R. L., Berbiguier N., Matile H., Miltgen F., Landau I., Pied S., Chigot J. P. Inhibitory activity of interferons and interleukin 1 on the development of Plasmodium falciparum in human hepatocyte cultures. J Immunol. 1987 Dec 15;139(12):4192–4195. [PubMed] [Google Scholar]
  29. Motard A., Marussig M., Rénia L., Baccam D., Landau I., Mattei D., Targett G., Mazier D. Immunization with the malaria heat shock like protein hsp70-1 enhances transmission to the mosquito. Int Immunol. 1995 Jan;7(1):147–150. doi: 10.1093/intimm/7.1.147. [DOI] [PubMed] [Google Scholar]
  30. Nussler A. K., Rénia L., Pasquetto V., Miltgen F., Matile H., Mazier D. In vivo induction of the nitric oxide pathway in hepatocytes after injection with irradiated malaria sporozoites, malaria blood parasites or adjuvants. Eur J Immunol. 1993 Apr;23(4):882–887. doi: 10.1002/eji.1830230417. [DOI] [PubMed] [Google Scholar]
  31. Nussler A., Pied S., Goma J., Rénia L., Miltgen F., Grau G. E., Mazier D. TNF inhibits malaria hepatic stages in vitro via synthesis of IL-6. Int Immunol. 1991 Apr;3(4):317–321. doi: 10.1093/intimm/3.4.317. [DOI] [PubMed] [Google Scholar]
  32. Nüssler A., Drapier J. C., Rénia L., Pied S., Miltgen F., Gentilini M., Mazier D. L-arginine-dependent destruction of intrahepatic malaria parasites in response to tumor necrosis factor and/or interleukin 6 stimulation. Eur J Immunol. 1991 Jan;21(1):227–230. doi: 10.1002/eji.1830210134. [DOI] [PubMed] [Google Scholar]
  33. Palacios M., Knowles R. G., Moncada S. Enhancers of nonspecific immunity induce nitric oxide synthase: induction does not correlate with toxicity or adjuvancy. Eur J Immunol. 1992 Sep;22(9):2303–2307. doi: 10.1002/eji.1830220919. [DOI] [PubMed] [Google Scholar]
  34. Pied S., Rénia L., Nüssler A., Miltgen F., Mazier D. Inhibitory activity of IL-6 on malaria hepatic stages. Parasite Immunol. 1991 Mar;13(2):211–217. doi: 10.1111/j.1365-3024.1991.tb00276.x. [DOI] [PubMed] [Google Scholar]
  35. Riley E. M., Allen S. J., Wheeler J. G., Blackman M. J., Bennett S., Takacs B., Schönfeld H. J., Holder A. A., Greenwood B. M. Naturally acquired cellular and humoral immune responses to the major merozoite surface antigen (PfMSP1) of Plasmodium falciparum are associated with reduced malaria morbidity. Parasite Immunol. 1992 May;14(3):321–337. doi: 10.1111/j.1365-3024.1992.tb00471.x. [DOI] [PubMed] [Google Scholar]
  36. Rénia L., Mattei D., Goma J., Pied S., Dubois P., Miltgen F., Nüssler A., Matile H., Menégaux F., Gentilini M. A malaria heat-shock-like determinant expressed on the infected hepatocyte surface is the target of antibody-dependent cell-mediated cytotoxic mechanisms by nonparenchymal liver cells. Eur J Immunol. 1990 Jul;20(7):1445–1449. doi: 10.1002/eji.1830200706. [DOI] [PubMed] [Google Scholar]
  37. Suhrbier A., Holder A. A., Wiser M. F., Nicholas J., Sinden R. E. Expression of the precursor of the major merozoite surface antigens during the hepatic stage of malaria. Am J Trop Med Hyg. 1989 Apr;40(4):351–355. doi: 10.4269/ajtmh.1989.40.351. [DOI] [PubMed] [Google Scholar]
  38. Szarfman A., Walliker D., McBride J. S., Lyon J. A., Quakyi I. A., Carter R. Allelic forms of gp195, a major blood-stage antigen of Plasmodium falciparum, are expressed in liver stages. J Exp Med. 1988 Jan 1;167(1):231–236. doi: 10.1084/jem.167.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tolle R., Bujard H., Cooper J. A. Plasmodium falciparum: variations within the C-terminal region of merozoite surface antigen-1. Exp Parasitol. 1995 Aug;81(1):47–54. doi: 10.1006/expr.1995.1091. [DOI] [PubMed] [Google Scholar]
  40. Voller A., O'Neill P. Immunofluorescence method suitable for large-scale application to malaria. Bull World Health Organ. 1971;45(4):524–529. [PMC free article] [PubMed] [Google Scholar]
  41. Warren H. S., Vogel F. R., Chedid L. A. Current status of immunological adjuvants. Annu Rev Immunol. 1986;4:369–388. doi: 10.1146/annurev.iy.04.040186.002101. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES