Abstract
Considerable evidence has implicated nontypeable Haemophilus influenzae (NTHi) lipooligosaccharide (LOS) in the pathogenesis of otitis media (OM); however, its exact role has not been conclusively established. Recently, two NTHi LOS-deficient mutants have been created and described. Strain 2019-DK1, an rfaD gene mutant, expresses a truncated LOS consisting of only three deoxy-D-manno-octulosonic acid residues, a single heptose, and lipid A. Strain 2019-B29, an isogenic htrB mutant, possesses an altered oligosaccharide core and an altered lipid A. Each strain's ability to colonize the nasopharynx and to induce OM subsequent to transbullar inoculation was evaluated in the chinchilla model. Nasopharyngeal colonization data indicate that the parent strain and both mutants are able to colonize the nasopharynx and exhibit comparable clearance kinetics. Compared with the parent and each other, however, the mutants demonstrated marked differences in virulence regarding their relative abilities to induce OM and persist in the middle ear post-transbullar inoculation. Strain B29 required a 3-log-greater dose to induce OM than the parent strain and did not exhibit evidence of sustained multiplication but persisted for the same duration as the parent. Conversely, strain-DK1, even when inoculated at a dose 4 logs greater than the parent dose, was eliminated from the middle ear 72 h after challenge. A comparison of the relative pathogenicities of these isolates provides the opportunity to address fundamental questions regarding the contribution of LOS to pathogenesis issues at the molecular level. Specifically, the impact of these LOS gene disruptions on OM pathogenesis can be defined and may thus provide potential new targets for future protection and intervention strategies.
Full Text
The Full Text of this article is available as a PDF (623.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bakaletz L. O., Daniels R. L., Lim D. J. Modeling adenovirus type 1-induced otitis media in the chinchilla: effect on ciliary activity and fluid transport function of eustachian tube mucosal epithelium. J Infect Dis. 1993 Oct;168(4):865–872. doi: 10.1093/infdis/168.4.865. [DOI] [PubMed] [Google Scholar]
- Campagnari A. A., Spinola S. M., Lesse A. J., Kwaik Y. A., Mandrell R. E., Apicella M. A. Lipooligosaccharide epitopes shared among gram-negative non-enteric mucosal pathogens. Microb Pathog. 1990 May;8(5):353–362. doi: 10.1016/0882-4010(90)90094-7. [DOI] [PubMed] [Google Scholar]
- DeMaria T. F. Animal models for nontypable Haemophilus influenzae otitis media. Pediatr Infect Dis J. 1989 Jan;8(1 Suppl):S40–S42. doi: 10.1097/00006454-198901001-00015. [DOI] [PubMed] [Google Scholar]
- DeMaria T. F., Briggs B. R., Lim D. J., Okazaki N. Experimental otitis media with effusion following middle ear inoculation of nonviable H influenzae. Ann Otol Rhinol Laryngol. 1984 Jan-Feb;93(1 Pt 1):52–56. doi: 10.1177/000348948409300113. [DOI] [PubMed] [Google Scholar]
- DeMaria T. F., Prior R. B., Briggs B. R., Lim D. J., Birck H. G. Endotoxin in middle-ear effusions from patients with chronic otitis media with effusion. J Clin Microbiol. 1984 Jul;20(1):15–17. doi: 10.1128/jcm.20.1.15-17.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doyle W. J., Supance J. S., Marshak G., Cantekin E. I., Bluestone C. D., Rohn D. D. An animal model of acute otitis media consequent to beta-lactamase-producing nontypable Haemophilus influenzae. Otolaryngol Head Neck Surg. 1982 Nov-Dec;90(6):831–836. doi: 10.1177/019459988209000627. [DOI] [PubMed] [Google Scholar]
- Faden H., Brodsky L., Bernstein J., Stanievich J., Krystofik D., Shuff C., Hong J. J., Ogra P. L. Otitis media in children: local immune response to nontypeable Haemophilus influenzae. Infect Immun. 1989 Nov;57(11):3555–3559. doi: 10.1128/iai.57.11.3555-3559.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson B. W., Melaugh W., Phillips N. J., Apicella M. A., Campagnari A. A., Griffiss J. M. Investigation of the structural heterogeneity of lipooligosaccharides from pathogenic Haemophilus and Neisseria species and of R-type lipopolysaccharides from Salmonella typhimurium by electrospray mass spectrometry. J Bacteriol. 1993 May;175(9):2702–2712. doi: 10.1128/jb.175.9.2702-2712.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu X. X., Tsai C. M., Apicella M. A., Lim D. J. Quantitation and biological properties of released and cell-bound lipooligosaccharides from nontypeable Haemophilus influenzae. Infect Immun. 1995 Oct;63(10):4115–4120. doi: 10.1128/iai.63.10.4115-4120.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iino Y., Kaneko Y., Takasaka T. Endotoxin in middle ear effusions tested with Limulus assay. Acta Otolaryngol. 1985 Jul-Aug;100(1-2):42–50. doi: 10.3109/00016488509108586. [DOI] [PubMed] [Google Scholar]
- Karow M., Fayet O., Cegielska A., Ziegelhoffer T., Georgopoulos C. Isolation and characterization of the Escherichia coli htrB gene, whose product is essential for bacterial viability above 33 degrees C in rich media. J Bacteriol. 1991 Jan;173(2):741–750. doi: 10.1128/jb.173.2.741-750.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leake E. R., Holmes K., Lim D. J., DeMaria T. F. Peptidoglycan isolated from nontypeable Haemophilus influenzae induces experimental otitis media in the chinchilla. J Infect Dis. 1994 Dec;170(6):1532–1538. doi: 10.1093/infdis/170.6.1532. [DOI] [PubMed] [Google Scholar]
- Lee N. G., Sunshine M. G., Apicella M. A. Molecular cloning and characterization of the nontypeable Haemophilus influenzae 2019 rfaE gene required for lipopolysaccharide biosynthesis. Infect Immun. 1995 Mar;63(3):818–824. doi: 10.1128/iai.63.3.818-824.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee N. G., Sunshine M. G., Engstrom J. J., Gibson B. W., Apicella M. A. Mutation of the htrB locus of Haemophilus influenzae nontypable strain 2019 is associated with modifications of lipid A and phosphorylation of the lipo-oligosaccharide. J Biol Chem. 1995 Nov 10;270(45):27151–27159. [PubMed] [Google Scholar]
- Mandrell R. E., McLaughlin R., Aba Kwaik Y., Lesse A., Yamasaki R., Gibson B., Spinola S. M., Apicella M. A. Lipooligosaccharides (LOS) of some Haemophilus species mimic human glycosphingolipids, and some LOS are sialylated. Infect Immun. 1992 Apr;60(4):1322–1328. doi: 10.1128/iai.60.4.1322-1328.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mäkelä P. H. Unencapsulated Haemophilus influenzae--what kind of pathogen? Eur J Clin Microbiol Infect Dis. 1988 Oct;7(5):606–609. doi: 10.1007/BF01964236. [DOI] [PubMed] [Google Scholar]
- Nichols W. A., Gibson B. W., Melaugh W., Lee N. G., Sunshine M., Apicella M. A. Identification of the ADP-L-glycero-D-manno-heptose-6-epimerase (rfaD) and heptosyltransferase II (rfaF) biosynthesis genes from nontypeable Haemophilus influenzae 2019. Infect Immun. 1997 Apr;65(4):1377–1386. doi: 10.1128/iai.65.4.1377-1386.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nonomura N., Nakano Y., Satoh Y., Fujioka O., Niijima H., Fujita M. Otitis media with effusion following inoculation of Haemophilus influenzae type b endotoxin. Arch Otorhinolaryngol. 1986;243(1):31–35. doi: 10.1007/BF00457904. [DOI] [PubMed] [Google Scholar]
- Okazaki N., DeMaria T. F., Briggs B. R., Lim D. J. Experimental otitis media with effusion induced by nonviable Hemophilus influenzae: cytologic and histologic study. Am J Otolaryngol. 1984 Mar-Apr;5(2):80–92. doi: 10.1016/s0196-0709(84)80026-5. [DOI] [PubMed] [Google Scholar]
- Pegues J. C., Chen L. S., Gordon A. W., Ding L., Coleman W. G., Jr Cloning, expression, and characterization of the Escherichia coli K-12 rfaD gene. J Bacteriol. 1990 Aug;172(8):4652–4660. doi: 10.1128/jb.172.8.4652-4660.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips N. J., Apicella M. A., Griffiss J. M., Gibson B. W. Structural characterization of the cell surface lipooligosaccharides from a nontypable strain of Haemophilus influenzae. Biochemistry. 1992 May 12;31(18):4515–4526. doi: 10.1021/bi00133a019. [DOI] [PubMed] [Google Scholar]
- Rosenfeld R. M., Doyle W. J., Swarts J. D., Seroky J., Pinero B. P. Third-generation cephalosporins in the treatment of acute pneumococcal otitis media. An animal study. Arch Otolaryngol Head Neck Surg. 1992 Jan;118(1):49–52. doi: 10.1001/archotol.1992.01880010053015. [DOI] [PubMed] [Google Scholar]
- Sirakova T., Kolattukudy P. E., Murwin D., Billy J., Leake E., Lim D., DeMaria T., Bakaletz L. Role of fimbriae expressed by nontypeable Haemophilus influenzae in pathogenesis of and protection against otitis media and relatedness of the fimbrin subunit to outer membrane protein A. Infect Immun. 1994 May;62(5):2002–2020. doi: 10.1128/iai.62.5.2002-2020.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sirisena D. M., MacLachlan P. R., Liu S. L., Hessel A., Sanderson K. E. Molecular analysis of the rfaD gene, for heptose synthesis, and the rfaF gene, for heptose transfer, in lipopolysaccharide synthesis in Salmonella typhimurium. J Bacteriol. 1994 Apr;176(8):2379–2385. doi: 10.1128/jb.176.8.2379-2385.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spinola S. M., Peacock J., Denny F. W., Smith D. L., Cannon J. G. Epidemiology of colonization by nontypable Haemophilus influenzae in children: a longitudinal study. J Infect Dis. 1986 Jul;154(1):100–109. doi: 10.1093/infdis/154.1.100. [DOI] [PubMed] [Google Scholar]
- Suzuki K., Bakaletz L. O. Synergistic effect of adenovirus type 1 and nontypeable Haemophilus influenzae in a chinchilla model of experimental otitis media. Infect Immun. 1994 May;62(5):1710–1718. doi: 10.1128/iai.62.5.1710-1718.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]