Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Nov;65(11):4460–4467. doi: 10.1128/iai.65.11.4460-4467.1997

A second merozoite surface protein (MSP-4) of Plasmodium falciparum that contains an epidermal growth factor-like domain.

V M Marshall 1, A Silva 1, M Foley 1, S Cranmer 1, L Wang 1, D J McColl 1, D J Kemp 1, R L Coppel 1
PMCID: PMC175641  PMID: 9353020

Abstract

Merozoite surface proteins of Plasmodium falciparum play a critical role in the invasion of human erythrocytes by the malaria parasite. Here we describe the identification of a novel protein with a molecular mass of 40 kDa that is found on the merozoite surface of P. falciparum. We call this protein merozoite surface protein 4 (MSP-4). Evidence for the surface location of MSP-4 includes (i) a staining pattern that is consistent with merozoite surface location in indirect immunofluorescent studies of cultured parasites, (ii) localization of MSP-4 in the detergent phase in Triton X-114 partitioning studies, and (iii) nucleotide sequencing studies which predict the presence of an N-terminal signal sequence and a hydrophobic C-terminal sequence in the protein. Immunoprecipitation studies of biosynthetically labelled parasites with [3H] myristic acid indicated that MSP-4 is anchored on the merozoite surface by a glycosylphosphatidylinositol moiety. Of considerable interest is the presence of a single epidermal growth factor-like domain at the C terminus of the MSP-4 protein, making it the second protein with such a structure to be found on the merozoite surface.

Full Text

The Full Text of this article is available as a PDF (816.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell G. I., Fong N. M., Stempien M. M., Wormsted M. A., Caput D., Ku L. L., Urdea M. S., Rall L. B., Sanchez-Pescador R. Human epidermal growth factor precursor: cDNA sequence, expression in vitro and gene organization. Nucleic Acids Res. 1986 Nov 11;14(21):8427–8446. doi: 10.1093/nar/14.21.8427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bianco A. E., Crewther P. E., Coppel R. L., Stahl H. D., Kemp D. J., Anders R. F., Brown G. V. Patterns of antigen expression in asexual blood stages and gametocytes of Plasmodium falciparum. Am J Trop Med Hyg. 1988 Mar;38(2):258–267. doi: 10.4269/ajtmh.1988.38.258. [DOI] [PubMed] [Google Scholar]
  3. Blackman M. J., Heidrich H. G., Donachie S., McBride J. S., Holder A. A. A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J Exp Med. 1990 Jul 1;172(1):379–382. doi: 10.1084/jem.172.1.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blackman M. J., Whittle H., Holder A. A. Processing of the Plasmodium falciparum major merozoite surface protein-1: identification of a 33-kilodalton secondary processing product which is shed prior to erythrocyte invasion. Mol Biochem Parasitol. 1991 Nov;49(1):35–44. doi: 10.1016/0166-6851(91)90128-s. [DOI] [PubMed] [Google Scholar]
  5. Bottius E., BenMohamed L., Brahimi K., Gras H., Lepers J. P., Raharimalala L., Aikawa M., Meis J., Slierendregt B., Tartar A. A novel Plasmodium falciparum sporozoite and liver stage antigen (SALSA) defines major B, T helper, and CTL epitopes. J Immunol. 1996 Apr 15;156(8):2874–2884. [PubMed] [Google Scholar]
  6. Chang S. P., Gibson H. L., Lee-Ng C. T., Barr P. J., Hui G. S. A carboxyl-terminal fragment of Plasmodium falciparum gp195 expressed by a recombinant baculovirus induces antibodies that completely inhibit parasite growth. J Immunol. 1992 Jul 15;149(2):548–555. [PubMed] [Google Scholar]
  7. Chappel J. A., Holder A. A. Monoclonal antibodies that inhibit Plasmodium falciparum invasion in vitro recognise the first growth factor-like domain of merozoite surface protein-1. Mol Biochem Parasitol. 1993 Aug;60(2):303–311. doi: 10.1016/0166-6851(93)90141-j. [DOI] [PubMed] [Google Scholar]
  8. Cooke R. M., Wilkinson A. J., Baron M., Pastore A., Tappin M. J., Campbell I. D., Gregory H., Sheard B. The solution structure of human epidermal growth factor. 1987 May 28-Jun 3Nature. 327(6120):339–341. doi: 10.1038/327339a0. [DOI] [PubMed] [Google Scholar]
  9. Cooper J. A., Cooper L. T., Saul A. J. Mapping of the region predominantly recognized by antibodies to the Plasmodium falciparum merozoite surface antigen MSA 1. Mol Biochem Parasitol. 1992 Apr;51(2):301–312. doi: 10.1016/0166-6851(92)90080-4. [DOI] [PubMed] [Google Scholar]
  10. Cooper J. A. Merozoite surface antigen-I of plasmodium. Parasitol Today. 1993 Feb;9(2):50–54. doi: 10.1016/0169-4758(93)90031-a. [DOI] [PubMed] [Google Scholar]
  11. Coppel R. L. Malaria--revealing the ties that bind. Parasitol Today. 1992 Dec;8(12):393–411. doi: 10.1016/0169-4758(92)90180-a. [DOI] [PubMed] [Google Scholar]
  12. Crewther P. E., Bianco A. E., Brown G. V., Coppel R. L., Stahl H. D., Kemp D. J., Anders R. F. Affinity purification of human antibodies directed against cloned antigens of Plasmodium falciparum. J Immunol Methods. 1986 Feb 12;86(2):257–264. doi: 10.1016/0022-1759(86)90462-x. [DOI] [PubMed] [Google Scholar]
  13. Crewther P. E., Culvenor J. G., Silva A., Cooper J. A., Anders R. F. Plasmodium falciparum: two antigens of similar size are located in different compartments of the rhoptry. Exp Parasitol. 1990 Feb;70(2):193–206. doi: 10.1016/0014-4894(90)90100-q. [DOI] [PubMed] [Google Scholar]
  14. Daly T. M., Long C. A. A recombinant 15-kilodalton carboxyl-terminal fragment of Plasmodium yoelii yoelii 17XL merozoite surface protein 1 induces a protective immune response in mice. Infect Immun. 1993 Jun;61(6):2462–2467. doi: 10.1128/iai.61.6.2462-2467.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dame J. B., Williams J. L., McCutchan T. F., Weber J. L., Wirtz R. A., Hockmeyer W. T., Maloy W. L., Haynes J. D., Schneider I., Roberts D. Structure of the gene encoding the immunodominant surface antigen on the sporozoite of the human malaria parasite Plasmodium falciparum. Science. 1984 Aug 10;225(4662):593–599. doi: 10.1126/science.6204383. [DOI] [PubMed] [Google Scholar]
  16. Davis C. G. The many faces of epidermal growth factor repeats. New Biol. 1990 May;2(5):410–419. [PubMed] [Google Scholar]
  17. Duffy P. E., Pimenta P., Kaslow D. C. Pgs28 belongs to a family of epidermal growth factor-like antigens that are targets of malaria transmission-blocking antibodies. J Exp Med. 1993 Feb 1;177(2):505–510. doi: 10.1084/jem.177.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Engelmann B., Schumacher U., Haen E. Epidermal growth factor binding sites on human erythrocytes in donors with different ABO blood groups. Am J Hematol. 1992 Apr;39(4):239–241. doi: 10.1002/ajh.2830390402. [DOI] [PubMed] [Google Scholar]
  19. Fenton B., Clark J. T., Wilson C. F., McBride J. S., Walliker D. Polymorphism of a 35-48 kDa Plasmodium falciparum merozoite surface antigen. Mol Biochem Parasitol. 1989 Apr;34(1):79–86. doi: 10.1016/0166-6851(89)90022-4. [DOI] [PubMed] [Google Scholar]
  20. Haldar K., Ferguson M. A., Cross G. A. Acylation of a Plasmodium falciparum merozoite surface antigen via sn-1,2-diacyl glycerol. J Biol Chem. 1985 Apr 25;260(8):4969–4974. [PubMed] [Google Scholar]
  21. Holder A. A., Blackman M. J., Borre M., Burghaus P. A., Chappel J. A., Keen J. K., Ling I. T., Ogun S. A., Owen C. A., Sinha K. A. Malaria parasites and erythrocyte invasion. Biochem Soc Trans. 1994 May;22(2):291–295. doi: 10.1042/bst0220291. [DOI] [PubMed] [Google Scholar]
  22. Holder A. A., Freeman R. R. The three major antigens on the surface of Plasmodium falciparum merozoites are derived from a single high molecular weight precursor. J Exp Med. 1984 Aug 1;160(2):624–629. doi: 10.1084/jem.160.2.624. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Holder A. A., Lockyer M. J., Odink K. G., Sandhu J. S., Riveros-Moreno V., Nicholls S. C., Hillman Y., Davey L. S., Tizard M. L., Schwarz R. T. Primary structure of the precursor to the three major surface antigens of Plasmodium falciparum merozoites. Nature. 1985 Sep 19;317(6034):270–273. doi: 10.1038/317270a0. [DOI] [PubMed] [Google Scholar]
  24. Kaslow D. C., Isaacs S. N., Quakyi I. A., Gwadz R. W., Moss B., Keister D. B. Induction of Plasmodium falciparum transmission-blocking antibodies by recombinant vaccinia virus. Science. 1991 May 31;252(5010):1310–1313. doi: 10.1126/science.1925544. [DOI] [PubMed] [Google Scholar]
  25. Kaslow D. C., Quakyi I. A., Syin C., Raum M. G., Keister D. B., Coligan J. E., McCutchan T. F., Miller L. H. A vaccine candidate from the sexual stage of human malaria that contains EGF-like domains. Nature. 1988 May 5;333(6168):74–76. doi: 10.1038/333074a0. [DOI] [PubMed] [Google Scholar]
  26. Lambros C., Vanderberg J. P. Synchronization of Plasmodium falciparum erythrocytic stages in culture. J Parasitol. 1979 Jun;65(3):418–420. [PubMed] [Google Scholar]
  27. Lanzer M., Wertheimer S. P., de Bruin D., Ravetch J. V. Plasmodium: control of gene expression in malaria parasites. Exp Parasitol. 1993 Aug;77(1):121–128. doi: 10.1006/expr.1993.1068. [DOI] [PubMed] [Google Scholar]
  28. Levitt A., Dimayuga F. O., Ruvolo V. R. Analysis of malarial transcripts using cDNA-directed polymerase chain reaction. J Parasitol. 1993 Oct;79(5):653–662. [PubMed] [Google Scholar]
  29. Ling I. T., Ogun S. A., Holder A. A. Immunization against malaria with a recombinant protein. Parasite Immunol. 1994 Feb;16(2):63–67. doi: 10.1111/j.1365-3024.1994.tb00324.x. [DOI] [PubMed] [Google Scholar]
  30. Marshall V. M., Zhang L., Anders R. F., Coppel R. L. Diversity of the vaccine candidate AMA-1 of Plasmodium falciparum. Mol Biochem Parasitol. 1996 Apr;77(1):109–113. doi: 10.1016/0166-6851(96)02583-2. [DOI] [PubMed] [Google Scholar]
  31. McBride J. S., Heidrich H. G. Fragments of the polymorphic Mr 185,000 glycoprotein from the surface of isolated Plasmodium falciparum merozoites form an antigenic complex. Mol Biochem Parasitol. 1987 Feb;23(1):71–84. doi: 10.1016/0166-6851(87)90189-7. [DOI] [PubMed] [Google Scholar]
  32. McColl D. J., Silva A., Foley M., Kun J. F., Favaloro J. M., Thompson J. K., Marshall V. M., Coppel R. L., Kemp D. J., Anders R. F. Molecular variation in a novel polymorphic antigen associated with Plasmodium falciparum merozoites. Mol Biochem Parasitol. 1994 Nov;68(1):53–67. doi: 10.1016/0166-6851(94)00149-9. [DOI] [PubMed] [Google Scholar]
  33. Mitchell G. H., Bannister L. H. Malaria parasite invasion: interactions with the red cell membrane. Crit Rev Oncol Hematol. 1988;8(4):225–310. doi: 10.1016/s1040-8428(88)80011-8. [DOI] [PubMed] [Google Scholar]
  34. Oduola A. M., Milhous W. K., Weatherly N. F., Bowdre J. H., Desjardins R. E. Plasmodium falciparum: induction of resistance to mefloquine in cloned strains by continuous drug exposure in vitro. Exp Parasitol. 1988 Dec;67(2):354–360. doi: 10.1016/0014-4894(88)90082-3. [DOI] [PubMed] [Google Scholar]
  35. Oeuvray C., Bouharoun-Tayoun H., Gras-Masse H., Bottius E., Kaidoh T., Aikawa M., Filgueira M. C., Tartar A., Druilhe P. Merozoite surface protein-3: a malaria protein inducing antibodies that promote Plasmodium falciparum killing by cooperation with blood monocytes. Blood. 1994 Sep 1;84(5):1594–1602. [PubMed] [Google Scholar]
  36. Oeuvray C., Bouharoun-Tayoun H., Grass-Masse H., Lepers J. P., Ralamboranto L., Tartar A., Druilhe P. A novel merozoite surface antigen of Plasmodium falciparum (MSP-3) identified by cellular-antibody cooperative mechanism antigenicity and biological activity of antibodies. Mem Inst Oswaldo Cruz. 1994;89 (Suppl 2):77–80. doi: 10.1590/s0074-02761994000600018. [DOI] [PubMed] [Google Scholar]
  37. Rosenthal P. J. Plasmodium falciparum: effects of proteinase inhibitors on globin hydrolysis by cultured malaria parasites. Exp Parasitol. 1995 Mar;80(2):272–281. doi: 10.1006/expr.1995.1033. [DOI] [PubMed] [Google Scholar]
  38. Saul A., Lord R., Jones G., Geysen H. M., Gale J., Mollard R. Cross-reactivity of antibody against an epitope of the Plasmodium falciparum second merozoite surface antigen. Parasite Immunol. 1989 Nov;11(6):593–601. doi: 10.1111/j.1365-3024.1989.tb00923.x. [DOI] [PubMed] [Google Scholar]
  39. Sinnis P., Sim B. K. Cell invasion by the vertebrate stages of Plasmodium. Trends Microbiol. 1997 Feb;5(2):52–58. doi: 10.1016/s0966-842x(97)84657-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Smith D. B., Johnson K. S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. 1988 Jul 15;67(1):31–40. doi: 10.1016/0378-1119(88)90005-4. [DOI] [PubMed] [Google Scholar]
  41. Smythe J. A., Coppel R. L., Brown G. V., Ramasamy R., Kemp D. J., Anders R. F. Identification of two integral membrane proteins of Plasmodium falciparum. Proc Natl Acad Sci U S A. 1988 Jul;85(14):5195–5199. doi: 10.1073/pnas.85.14.5195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Smythe J. A., Coppel R. L., Day K. P., Martin R. K., Oduola A. M., Kemp D. J., Anders R. F. Structural diversity in the Plasmodium falciparum merozoite surface antigen 2. Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1751–1755. doi: 10.1073/pnas.88.5.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Thomas A. W., Waters A. P., Carr D. Analysis of variation in PF83, an erythrocytic merozoite vaccine candidate antigen of Plasmodium falciparum. Mol Biochem Parasitol. 1990 Sep-Oct;42(2):285–287. doi: 10.1016/0166-6851(90)90172-i. [DOI] [PubMed] [Google Scholar]
  44. Trottein F., Cowman A. F. Molecular cloning and sequence of two novel P-type adenosinetriphosphatases from Plasmodium falciparum. Eur J Biochem. 1995 Jan 15;227(1-2):214–225. doi: 10.1111/j.1432-1033.1995.tb20379.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES