Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Nov;65(11):4468–4475. doi: 10.1128/iai.65.11.4468-4475.1997

Misexpression of the white-phase-specific gene WH11 in the opaque phase of Candida albicans affects switching and virulence.

C A Kvaal 1, T Srikantha 1, D R Soll 1
PMCID: PMC175642  PMID: 9353021

Abstract

Candida albicans WO-1 switches between a white- and an opaque-colony-forming phenotype. The gene WH11 is expressed differentially in the white phase. The WH11 open reading frame was inserted downstream of the promoter of the opaque-phase-specific gene OP4 in the transforming vector pCWOP16, and resulting transformants were demonstrated to misexpress WH11 in the opaque phase. Misexpression had no effect on the ability to switch from the white to the opaque or the opaque to the white phase, and it had no effect on the genesis of the unique opaque-phase cellular phenotype, even though the Wh11 protein was distributed throughout the cytoplasm in a manner similar to that observed for the endogenous gene product in the white phase. Misexpression did, however, increase the frequency of the opaque-to-white transition 330-fold and markedly increased the virulence of cells in the opaque phase in a mouse tail injection model.

Full Text

The Full Text of this article is available as a PDF (965.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson J. M., Soll D. R. Unique phenotype of opaque cells in the white-opaque transition of Candida albicans. J Bacteriol. 1987 Dec;169(12):5579–5588. doi: 10.1128/jb.169.12.5579-5588.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson J., Cundiff L., Schnars B., Gao M. X., Mackenzie I., Soll D. R. Hypha formation in the white-opaque transition of Candida albicans. Infect Immun. 1989 Feb;57(2):458–467. doi: 10.1128/iai.57.2.458-467.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson J., Mihalik R., Soll D. R. Ultrastructure and antigenicity of the unique cell wall pimple of the Candida opaque phenotype. J Bacteriol. 1990 Jan;172(1):224–235. doi: 10.1128/jb.172.1.224-235.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bedell G. W., Soll D. R. Effects of low concentrations of zinc on the growth and dimorphism of Candida albicans: evidence for zinc-resistant and -sensitive pathways for mycelium formation. Infect Immun. 1979 Oct;26(1):348–354. doi: 10.1128/iai.26.1.348-354.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bergen M. S., Voss E., Soll D. R. Switching at the cellular level in the white-opaque transition of Candida albicans. J Gen Microbiol. 1990 Oct;136(10):1925–1936. doi: 10.1099/00221287-136-10-1925. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol. 1994 Oct;14(1):87–99. doi: 10.1111/j.1365-2958.1994.tb01269.x. [DOI] [PubMed] [Google Scholar]
  9. Klemenz R., Andres A. C., Fröhli E., Schäfer R., Aoyama A. Expression of the murine small heat shock proteins hsp 25 and alpha B crystallin in the absence of stress. J Cell Biol. 1993 Feb;120(3):639–645. doi: 10.1083/jcb.120.3.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kolotila M. P., Diamond R. D. Effects of neutrophils and in vitro oxidants on survival and phenotypic switching of Candida albicans WO-1. Infect Immun. 1990 May;58(5):1174–1179. doi: 10.1128/iai.58.5.1174-1179.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lee K. L., Buckley H. R., Campbell C. C. An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida Albicans. Sabouraudia. 1975 Jul;13(2):148–153. doi: 10.1080/00362177585190271. [DOI] [PubMed] [Google Scholar]
  12. Mehlen P., Mehlen A., Guillet D., Preville X., Arrigo A. P. Tumor necrosis factor-alpha induces changes in the phosphorylation, cellular localization, and oligomerization of human hsp27, a stress protein that confers cellular resistance to this cytokine. J Cell Biochem. 1995 Jun;58(2):248–259. doi: 10.1002/jcb.240580213. [DOI] [PubMed] [Google Scholar]
  13. Merck K. B., Groenen P. J., Voorter C. E., de Haard-Hoekman W. A., Horwitz J., Bloemendal H., de Jong W. W. Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. J Biol Chem. 1993 Jan 15;268(2):1046–1052. [PubMed] [Google Scholar]
  14. Morrow B., Srikantha T., Anderson J., Soll D. R. Coordinate regulation of two opaque-phase-specific genes during white-opaque switching in Candida albicans. Infect Immun. 1993 May;61(5):1823–1828. doi: 10.1128/iai.61.5.1823-1828.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morrow B., Srikantha T., Soll D. R. Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans. Mol Cell Biol. 1992 Jul;12(7):2997–3005. doi: 10.1128/mcb.12.7.2997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Praekelt U. M., Meacock P. A. HSP12, a new small heat shock gene of Saccharomyces cerevisiae: analysis of structure, regulation and function. Mol Gen Genet. 1990 Aug;223(1):97–106. doi: 10.1007/BF00315801. [DOI] [PubMed] [Google Scholar]
  17. Rikkerink E. H., Magee B. B., Magee P. T. Opaque-white phenotype transition: a programmed morphological transition in Candida albicans. J Bacteriol. 1988 Feb;170(2):895–899. doi: 10.1128/jb.170.2.895-899.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schröppel K., Srikantha T., Wessels D., DeCock M., Lockhart S. R., Soll D. R. Cytoplasmic localization of the white phase-specific WH11 gene product of Candida albicans. Microbiology. 1996 Aug;142(Pt 8):2245–2254. doi: 10.1099/13500872-142-8-2245. [DOI] [PubMed] [Google Scholar]
  19. Slutsky B., Staebell M., Anderson J., Risen L., Pfaller M., Soll D. R. "White-opaque transition": a second high-frequency switching system in Candida albicans. J Bacteriol. 1987 Jan;169(1):189–197. doi: 10.1128/jb.169.1.189-197.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Soll D. R. Gene regulation during high-frequency switching in Candida albicans. Microbiology. 1997 Feb;143(Pt 2):279–288. doi: 10.1099/00221287-143-2-279. [DOI] [PubMed] [Google Scholar]
  21. Soll D. R. High-frequency switching in Candida albicans. Clin Microbiol Rev. 1992 Apr;5(2):183–203. doi: 10.1128/cmr.5.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Srikantha T., Chandrasekhar A., Soll D. R. Functional analysis of the promoter of the phase-specific WH11 gene of Candida albicans. Mol Cell Biol. 1995 Mar;15(3):1797–1805. doi: 10.1128/mcb.15.3.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Srikantha T., Klapach A., Lorenz W. W., Tsai L. K., Laughlin L. A., Gorman J. A., Soll D. R. The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans. J Bacteriol. 1996 Jan;178(1):121–129. doi: 10.1128/jb.178.1.121-129.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Srikantha T., Soll D. R. A white-specific gene in the white-opaque switching system of Candida albicans. Gene. 1993 Sep 6;131(1):53–60. doi: 10.1016/0378-1119(93)90668-s. [DOI] [PubMed] [Google Scholar]
  25. Srikantha T., Tsai L. K., Soll D. R. The WH11 gene of Candida albicans is regulated in two distinct developmental programs through the same transcription activation sequences. J Bacteriol. 1997 Jun;179(12):3837–3844. doi: 10.1128/jb.179.12.3837-3844.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stone R. L., Matarese V., Magee B. B., Magee P. T., Bernlohr D. A. Cloning, sequencing and chromosomal assignment of a gene from Saccharomyces cerevisiae which is negatively regulated by glucose and positively by lipids. Gene. 1990 Dec 15;96(2):171–176. doi: 10.1016/0378-1119(90)90249-q. [DOI] [PubMed] [Google Scholar]
  27. Sundstrom P., Smith D., Sypherd P. S. Sequence analysis and expression of the two genes for elongation factor 1 alpha from the dimorphic yeast Candida albicans. J Bacteriol. 1990 Apr;172(4):2036–2045. doi: 10.1128/jb.172.4.2036-2045.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Varela J. C., Praekelt U. M., Meacock P. A., Planta R. J., Mager W. H. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol Cell Biol. 1995 Nov;15(11):6232–6245. doi: 10.1128/mcb.15.11.6232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. White T. C., Miyasaki S. H., Agabian N. Three distinct secreted aspartyl proteinases in Candida albicans. J Bacteriol. 1993 Oct;175(19):6126–6133. doi: 10.1128/jb.175.19.6126-6133.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES