Skip to main content
Gut logoLink to Gut
. 2000 Jun;46(6):782–789. doi: 10.1136/gut.46.6.782

Localisation of cyclooxygenase 1 and cyclooxygenase 2 in Helicobacter pylori related gastritis and gastric ulcer tissues in humans

A Tatsuguchi 1, C Sakamoto 1, K Wada 1, T Akamatsu 1, T Tsukui 1, K Miyake 1, S Futagami 1, T Kishida 1, Y Fukuda 1, N Yamanaka 1, M Kobayashi 1
PMCID: PMC1756437  PMID: 10807888

Abstract

BACKGROUND—Prostaglandin endoperoxide synthase/cyclooxygenase (COX) is the key enzyme in gastric mucosal protection and repair but its cellular localisation in the human stomach is still unclear.
AIMS—To investigate immunohistochemically the cellular distribution of COX-1 and COX-2 proteins in the human stomach with or without gastritis or ulceration.
PATIENTS AND METHODS—Tissues were obtained by surgical resection of gastric ulcers associated with perforation (n=9) or by biopsy from Helicobacter pylori positive patients with gastric ulcers (n=45) and H pylori negative healthy subjects (n=15). COX expression was detected by semiquantitative reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and light and electron microscopic immunohistochemistry.
RESULTS—COX-2 mRNA and protein were detected in gastric ulcer tissues but not in intact gastric mucosa. COX-1 mRNA and protein were detected in the intact mucosa. COX-2 immunostaining was exclusively localised in macrophages and fibroblasts between necrotic and granulation tissues of the ulcer bed. The percentage of COX-2 expressing cells was significantly higher in open than in closed ulcers, and in gastritis than in gastric mucosa without H pylori infection. COX-1 immunoreactivity localised in lamina propria mesenchymal cells was similar in various stages of ulcer disease and in intact gastric mucosa. Electron microscopic immunohistochemistry revealed both COX-1 and COX-2 on the luminal surfaces of the endoplasmic reticulum and nuclear envelope of macrophages and fibroblasts.
CONCLUSIONS—Our results showed that COX-2 protein was induced in macrophages and fibroblasts in gastric ulcers and H pylori related gastritis, suggesting its involvement in the tissue repair process.


Keywords: cyclooxygenase; macrophage; fibroblast; gastric ulcer; gastritis

Full Text

The Full Text of this article is available as a PDF (276.8 KB).

Figure 1  .

Figure 1  

COX and β-actin mRNA levels in gastric biopsy samples. COX and β-actin mRNA levels were determined by semiquantitative RT-PCR in gastric biopsy samples as described in the Methods. PCR products were separated on 1.0% agarose gels. (A) A representative gel of samples from patients with intact mucosa without H pylori infection, in H pylori positive gastritis, and in H pylori positive gastric ulceration. (B, C) Densitometry of all samples from intact (n=4), H pylori positive gastritis (n=4) and H pylori positive gastric ulcer (n=4) tissues for COX-1 (B) and COX-2 (C), standardised against β-actin. *p<0.005 v intact mucosa (Fisher's PLSD test).

Figure 2  .

Figure 2  

Western blot analysis of COX-1 and COX-2 proteins. Purified sheep COX-1 and COX-2 proteins were included as controls. Anti-COX-1 antibody labelled a single band of 70 kDa molecular weight in samples from intact gastric mucosa (both body and antrum), intact duodenal mucosa, and gastric and duodenal ulcer edge. Anti-COX-2 antibody labelled a single band of 72 kDa molecular weight in samples from gastric and duodenal ulcer edge but not in any samples from intact gastric and duodenal mucosa.

Figure 3  .

Figure 3  

Immunohistochemical localisation of COX-1 (A, C) and COX-2 (B, D) in the intact gastric mucosa (A, B) and in H pylori related gastritis mucosa (C, D). COX-1 immunoreactivity is present in scattered lamina propria mesenchymal cells (arrows) in gastric mucosa with or without gastritis (A, C). COX-2 immunoreactivity is not present in the intact gastric mucosa (B) but in scattered lamina propria mesenchymal cells (arrows) in H pylori related gastritis mucosa (D). The control specimen, treated with non-immunised rabbit serum instead of the primary antibody, shows no reaction (E). Bar=50 µm

Figure 4  .

Figure 4  

Immunohistochemical localisation of COX-1 (A, B, b) and COX-2 (C, D, E, F) in gastric ulcer tissues. (A) Low magnification view of the ulcer bed. Necrotic tissue (N) covers the surface of the ulcerated area. COX-1 was not stained in any type of cell in the ulcer bed. (B) COX-1 was stained in scattered lamina propria mesenchymal cells of the ulcer edge (arrows) as well as of H pylori related gastritis mucosa (see fig 3C) ((b) higher magnification view of (B)). (C) The same area as (A). COX-2 was strongly stained in many mesenchymal cells between necrotic (N) and granulation tissue of the ulcer bed. (D) Higher magnification view of (C). The immunoreactivity for COX-2 of both macrophages and fibroblasts varies from weak to strong. (E) Higher magnification view of (C). COX-2 was stained in mesenchymal cells around capillaries (arrow heads) in the ulcer bed. (F) COX-2 showed a fair amount of staining in epithelial cells of the ulcer edge. Arrows indicate regenerating epithelial cells and arrow heads intestinal metaplasia. (G) The same area as (A). The control specimen, treated with non-immunised rabbit serum instead of the primary antibody, shows no reaction. (H) The same area as (F). The control specimen, treated with non-immunised rabbit serum instead of the primary antibody, shows no reaction. N, necrotic tissue, ub, ulcer bed. Bars: A, B, C, F, G, H=100 µm; b, D, E=50 µm.

Figure 5  .

Figure 5  

Electron microscopic immunohistochemical analysis of COX-1 and COX-2 in gastric ulcers. (A) COX-1 labelling is observed in the endoplasmic reticulum (arrows) and nuclear envelope in fibroblast-like cells. (B) COX-2 labelling is observed in the endoplasmic reticulum (arrows) and nuclear envelope in macrophage-like cells. There is no difference in the intracellular localisation of COX-1 and COX-2 in mononuclear cells. Bars=1 µm.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bamba H., Ota S., Kato A., Matsuzaki F. Nonsteroidal anti-inflammatory drugs may delay the repair of gastric mucosa by suppressing prostaglandin-mediated increase of hepatocyte growth factor production. Biochem Biophys Res Commun. 1998 Apr 17;245(2):567–571. doi: 10.1006/bbrc.1998.8436. [DOI] [PubMed] [Google Scholar]
  2. Becker A., Reith A., Napiwotzki J., Kadenbach B. A quantitative method of determining initial amounts of DNA by polymerase chain reaction cycle titration using digital imaging and a novel DNA stain. Anal Biochem. 1996 Jun 1;237(2):204–207. doi: 10.1006/abio.1996.0230. [DOI] [PubMed] [Google Scholar]
  3. DeWitt D. L., Smith W. L. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc Natl Acad Sci U S A. 1988 Mar;85(5):1412–1416. doi: 10.1073/pnas.85.5.1412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hida T., Yatabe Y., Achiwa H., Muramatsu H., Kozaki K., Nakamura S., Ogawa M., Mitsudomi T., Sugiura T., Takahashi T. Increased expression of cyclooxygenase 2 occurs frequently in human lung cancers, specifically in adenocarcinomas. Cancer Res. 1998 Sep 1;58(17):3761–3764. [PubMed] [Google Scholar]
  5. Hla T., Neilson K. Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7384–7388. doi: 10.1073/pnas.89.16.7384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hull M. A., Brough J. L., Powe D. G., Carter G. I., Jenkins D., Hawkey C. J. Expression of basic fibroblast growth factor in intact and ulcerated human gastric mucosa. Gut. 1998 Oct;43(4):525–536. doi: 10.1136/gut.43.4.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kishimoto Y., Wada K., Nakamoto K., Kawasaki H., Hasegawa J. Levels of cyclooxygenase-1 and -2 mRNA expression at various stages of acute gastric injury induced by ischemia-reperfusion in rats. Arch Biochem Biophys. 1998 Apr 1;352(1):153–157. doi: 10.1006/abbi.1997.0572. [DOI] [PubMed] [Google Scholar]
  8. Konda Y., Nishisaki H., Nakano O., Matsuda K., Wada K., Nagao M., Matozaki T., Sakamoto C. Prostaglandin protects isolated guinea pig chief cells against ethanol injury via an increase in diacylglycerol. J Clin Invest. 1990 Dec;86(6):1897–1903. doi: 10.1172/JCI114922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lee S. H., Soyoola E., Chanmugam P., Hart S., Sun W., Zhong H., Liou S., Simmons D., Hwang D. Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem. 1992 Dec 25;267(36):25934–25938. [PubMed] [Google Scholar]
  10. McCarthy C. J., Crofford L. J., Greenson J., Scheiman J. M. Cyclooxygenase-2 expression in gastric antral mucosa before and after eradication of Helicobacter pylori infection. Am J Gastroenterol. 1999 May;94(5):1218–1223. doi: 10.1111/j.1572-0241.1999.01070.x. [DOI] [PubMed] [Google Scholar]
  11. Migita K., Tominaga M., Origuchi T., Kawabe Y., Aoyagi T., Urayama S., Yamasaki S., Hida A., Kawakami A., Eguchi K. Induction of cyclooxygenase-2 in human synovial cells by beta 2-microglobulin. Kidney Int. 1999 Feb;55(2):572–578. doi: 10.1046/j.1523-1755.1999.00283.x. [DOI] [PubMed] [Google Scholar]
  12. Mizuno H., Sakamoto C., Matsuda K., Wada K., Uchida T., Noguchi H., Akamatsu T., Kasuga M. Induction of cyclooxygenase 2 in gastric mucosal lesions and its inhibition by the specific antagonist delays healing in mice. Gastroenterology. 1997 Feb;112(2):387–397. doi: 10.1053/gast.1997.v112.pm9024292. [DOI] [PubMed] [Google Scholar]
  13. Morita I., Schindler M., Regier M. K., Otto J. C., Hori T., DeWitt D. L., Smith W. L. Different intracellular locations for prostaglandin endoperoxide H synthase-1 and -2. J Biol Chem. 1995 May 5;270(18):10902–10908. doi: 10.1074/jbc.270.18.10902. [DOI] [PubMed] [Google Scholar]
  14. Nakano O., Sakamoto C., Matsuda K., Konda Y., Matozaki T., Nishisaki H., Wada K., Suzuki T., Uchida T., Nagao M. Induction of cyclooxygenase protein and stimulation of prostaglandin E2 release by epidermal growth factor in cultured guinea pig gastric mucous cells. Dig Dis Sci. 1995 Aug;40(8):1679–1686. doi: 10.1007/BF02212688. [DOI] [PubMed] [Google Scholar]
  15. O'Sullivan M. G., Huggins E. M., Jr, Meade E. A., DeWitt D. L., McCall C. E. Lipopolysaccharide induces prostaglandin H synthase-2 in alveolar macrophages. Biochem Biophys Res Commun. 1992 Sep 16;187(2):1123–1127. doi: 10.1016/0006-291x(92)91313-f. [DOI] [PubMed] [Google Scholar]
  16. Oka A., Takashima S. Induction of cyclo-oxygenase 2 in brains of patients with Down's syndrome and dementia of Alzheimer type: specific localization in affected neurones and axons. Neuroreport. 1997 Mar 24;8(5):1161–1164. doi: 10.1097/00001756-199703240-00020. [DOI] [PubMed] [Google Scholar]
  17. Okami J., Yamamoto H., Fujiwara Y., Tsujie M., Kondo M., Noura S., Oshima S., Nagano H., Dono K., Umeshita K. Overexpression of cyclooxygenase-2 in carcinoma of the pancreas. Clin Cancer Res. 1999 Aug;5(8):2018–2024. [PubMed] [Google Scholar]
  18. Oshima M., Dinchuk J. E., Kargman S. L., Oshima H., Hancock B., Kwong E., Trzaskos J. M., Evans J. F., Taketo M. M. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell. 1996 Nov 29;87(5):803–809. doi: 10.1016/s0092-8674(00)81988-1. [DOI] [PubMed] [Google Scholar]
  19. Reuter B. K., Asfaha S., Buret A., Sharkey K. A., Wallace J. L. Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J Clin Invest. 1996 Nov 1;98(9):2076–2085. doi: 10.1172/JCI119013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Robert A., Nezamis J. E., Lancaster C., Hanchar A. J. Cytoprotection by prostaglandins in rats. Prevention of gastric necrosis produced by alcohol, HCl, NaOH, hypertonic NaCl, and thermal injury. Gastroenterology. 1979 Sep;77(3):433–443. [PubMed] [Google Scholar]
  21. Romano M., Ricci V., Memoli A., Tuccillo C., Di Popolo A., Sommi P., Acquaviva A. M., Del Vecchio Blanco C., Bruni C. B., Zarrilli R. Helicobacter pylori up-regulates cyclooxygenase-2 mRNA expression and prostaglandin E2 synthesis in MKN 28 gastric mucosal cells in vitro. J Biol Chem. 1998 Oct 30;273(44):28560–28563. doi: 10.1074/jbc.273.44.28560. [DOI] [PubMed] [Google Scholar]
  22. Sakamoto C., Matsuda K., Nakano O., Konda Y., Matozaki T., Nishisaki H., Kasuga M. EGF stimulates both cyclooxygenase activity and cell proliferation of cultured guinea pig gastric mucous cells. J Gastroenterol. 1994 Jul;29 (Suppl 7):73–76. [PubMed] [Google Scholar]
  23. Sawaoka H., Kawano S., Tsuji S., Tsuji M., Sun W., Gunawan E. S., Hori M. Helicobacter pylori infection induces cyclooxygenase-2 expression in human gastric mucosa. Prostaglandins Leukot Essent Fatty Acids. 1998 Nov;59(5):313–316. doi: 10.1016/s0952-3278(98)90079-5. [DOI] [PubMed] [Google Scholar]
  24. Schmassmann A., Peskar B. M., Stettler C., Netzer P., Stroff T., Flogerzi B., Halter F. Effects of inhibition of prostaglandin endoperoxide synthase-2 in chronic gastro-intestinal ulcer models in rats. Br J Pharmacol. 1998 Mar;123(5):795–804. doi: 10.1038/sj.bjp.0701672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schmassmann A., Stettler C., Poulsom R., Tarasova N., Hirschi C., Flogerzi B., Matsumoto K., Nakamura T., Halter F. Roles of hepatocyte growth factor and its receptor Met during gastric ulcer healing in rats. Gastroenterology. 1997 Dec;113(6):1858–1872. doi: 10.1016/s0016-5085(97)70005-2. [DOI] [PubMed] [Google Scholar]
  26. Singer I. I., Kawka D. W., Schloemann S., Tessner T., Riehl T., Stenson W. F. Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology. 1998 Aug;115(2):297–306. doi: 10.1016/s0016-5085(98)70196-9. [DOI] [PubMed] [Google Scholar]
  27. Spencer A. G., Woods J. W., Arakawa T., Singer I. I., Smith W. L. Subcellular localization of prostaglandin endoperoxide H synthases-1 and -2 by immunoelectron microscopy. J Biol Chem. 1998 Apr 17;273(16):9886–9893. doi: 10.1074/jbc.273.16.9886. [DOI] [PubMed] [Google Scholar]
  28. Takahashi M., Ota S., Shimada T., Hamada E., Kawabe T., Okudaira T., Matsumura M., Kaneko N., Terano A., Nakamura T. Hepatocyte growth factor is the most potent endogenous stimulant of rabbit gastric epithelial cell proliferation and migration in primary culture. J Clin Invest. 1995 May;95(5):1994–2003. doi: 10.1172/JCI117884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takahashi S., Shigeta J., Inoue H., Tanabe T., Okabe S. Localization of cyclooxygenase-2 and regulation of its mRNA expression in gastric ulcers in rats. Am J Physiol. 1998 Nov;275(5 Pt 1):G1137–G1145. doi: 10.1152/ajpgi.1998.275.5.G1137. [DOI] [PubMed] [Google Scholar]
  30. Terano A., Ota S., Mach T., Hiraishi H., Stachura J., Tarnawski A., Ivey K. J. Prostaglandin protects against taurocholate-induced damage to rat gastric mucosal cell culture. Gastroenterology. 1987 Mar;92(3):669–677. doi: 10.1016/0016-5085(87)90016-3. [DOI] [PubMed] [Google Scholar]
  31. Tsujii M., DuBois R. N. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell. 1995 Nov 3;83(3):493–501. doi: 10.1016/0092-8674(95)90127-2. [DOI] [PubMed] [Google Scholar]
  32. Tsujii M., Kawano S., Tsuji S., Sawaoka H., Hori M., DuBois R. N. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998 May 29;93(5):705–716. doi: 10.1016/s0092-8674(00)81433-6. [DOI] [PubMed] [Google Scholar]
  33. Xie W. L., Chipman J. G., Robertson D. L., Erikson R. L., Simmons D. L. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci U S A. 1991 Apr 1;88(7):2692–2696. doi: 10.1073/pnas.88.7.2692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Zimmermann K. C., Sarbia M., Schrör K., Weber A. A. Constitutive cyclooxygenase-2 expression in healthy human and rabbit gastric mucosa. Mol Pharmacol. 1998 Sep;54(3):536–540. doi: 10.1124/mol.54.3.536. [DOI] [PubMed] [Google Scholar]

Articles from Gut are provided here courtesy of BMJ Publishing Group

RESOURCES