Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Nov;65(11):4525–4530. doi: 10.1128/iai.65.11.4525-4530.1997

Immunization with heat-killed Mycobacterium vaccae stimulates CD8+ cytotoxic T cells specific for macrophages infected with Mycobacterium tuberculosis.

M A Skinner 1, S Yuan 1, R Prestidge 1, D Chuk 1, J D Watson 1, P L Tan 1
PMCID: PMC175650  PMID: 9353029

Abstract

Immune responses to Mycobacterium tuberculosis are analyzed in mice which have been immunized with Mycobacterium vaccae to examine novel ways of altering protective immunity against M. tuberculosis. The spleen cells of mice immunized with M. vaccae proliferate and secrete gamma interferon (IFN-gamma) in response to challenge with live M. tuberculosis in vitro. Immunization with M. vaccae results in the generation of CD8+ T cells which kill syngeneic macrophages infected with M. tuberculosis. These effector cytotoxic T cells (CTL) are detectable in the spleen at 2 weeks after immunization with M. vaccae but cannot be found in splenocytes 3 to 6 weeks postimmunization. However, M. tuberculosis-specific CTL are revealed following restimulation in vitro with heat-killed M. vaccae or M. tuberculosis, consistent with the activation of memory cells. These CD8+ T cells secrete IFN-gamma and enhance the production of interleukin 12 when cocultured with M. tuberculosis-infected macrophages. It is suggested that CD8+ T cells with a cytokine secretion profile of the Tc1 class may themselves maintain the dominance of a Th1-type cytokine response following immunization with M. vaccae. Heat-killed M. vaccae deserves attention as an alternative to attenuated live mycobacterial vaccines.

Full Text

The Full Text of this article is available as a PDF (363.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abou-Zeid C., Gares M. P., Inwald J., Janssen R., Zhang Y., Young D. B., Hetzel C., Lamb J. R., Baldwin S. L., Orme I. M. Induction of a type 1 immune response to a recombinant antigen from Mycobacterium tuberculosis expressed in Mycobacterium vaccae. Infect Immun. 1997 May;65(5):1856–1862. doi: 10.1128/iai.65.5.1856-1862.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Andersen P., Andersen A. B., Sørensen A. L., Nagai S. Recall of long-lived immunity to Mycobacterium tuberculosis infection in mice. J Immunol. 1995 Apr 1;154(7):3359–3372. [PubMed] [Google Scholar]
  3. Bloom B. R., Murray C. J. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. doi: 10.1126/science.257.5073.1055. [DOI] [PubMed] [Google Scholar]
  4. Colditz G. A., Brewer T. F., Berkey C. S., Wilson M. E., Burdick E., Fineberg H. V., Mosteller F. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA. 1994 Mar 2;271(9):698–702. [PubMed] [Google Scholar]
  5. Cooper A. M., D'Souza C., Frank A. A., Orme I. M. The course of Mycobacterium tuberculosis infection in the lungs of mice lacking expression of either perforin- or granzyme-mediated cytolytic mechanisms. Infect Immun. 1997 Apr;65(4):1317–1320. doi: 10.1128/iai.65.4.1317-1320.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cooper A. M., Dalton D. K., Stewart T. A., Griffin J. P., Russell D. G., Orme I. M. Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med. 1993 Dec 1;178(6):2243–2247. doi: 10.1084/jem.178.6.2243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Libero G., Flesch I., Kaufmann S. H. Mycobacteria-reactive Lyt-2+ T cell lines. Eur J Immunol. 1988 Jan;18(1):59–66. doi: 10.1002/eji.1830180110. [DOI] [PubMed] [Google Scholar]
  8. Etemadi A., Farid R., Stanford J. L. Immunotherapy for drug-resistant tuberculosis. Lancet. 1992 Nov 28;340(8831):1360–1361. doi: 10.1016/0140-6736(92)92551-p. [DOI] [PubMed] [Google Scholar]
  9. Flesch I. E., Hess J. H., Huang S., Aguet M., Rothe J., Bluethmann H., Kaufmann S. H. Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon gamma and tumor necrosis factor alpha. J Exp Med. 1995 May 1;181(5):1615–1621. doi: 10.1084/jem.181.5.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Flynn J. L., Goldstein M. M., Triebold K. J., Koller B., Bloom B. R. Major histocompatibility complex class I-restricted T cells are required for resistance to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):12013–12017. doi: 10.1073/pnas.89.24.12013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Laochumroonvorapong P., Wang J., Liu C. C., Ye W., Moreira A. L., Elkon K. B., Freedman V. H., Kaplan G. Perforin, a cytotoxic molecule which mediates cell necrosis, is not required for the early control of mycobacterial infection in mice. Infect Immun. 1997 Jan;65(1):127–132. doi: 10.1128/iai.65.1.127-132.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Müller I., Cobbold S. P., Waldmann H., Kaufmann S. H. Impaired resistance to Mycobacterium tuberculosis infection after selective in vivo depletion of L3T4+ and Lyt-2+ T cells. Infect Immun. 1987 Sep;55(9):2037–2041. doi: 10.1128/iai.55.9.2037-2041.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Onyebujoh P. C., Abdulmumini T., Robinson S., Rook G. A., Stanford J. L. Immunotherapy with Mycobacterium vaccae as an addition to chemotherapy for the treatment of pulmonary tuberculosis under difficult conditions in Africa. Respir Med. 1995 Mar;89(3):199–207. doi: 10.1016/0954-6111(95)90248-1. [DOI] [PubMed] [Google Scholar]
  14. Orme I. M. Induction of nonspecific acquired resistance and delayed-type hypersensitivity, but not specific acquired resistance in mice inoculated with killed mycobacterial vaccines. Infect Immun. 1988 Dec;56(12):3310–3312. doi: 10.1128/iai.56.12.3310-3312.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Orme I. M., Miller E. S., Roberts A. D., Furney S. K., Griffin J. P., Dobos K. M., Chi D., Rivoire B., Brennan P. J. T lymphocytes mediating protection and cellular cytolysis during the course of Mycobacterium tuberculosis infection. Evidence for different kinetics and recognition of a wide spectrum of protein antigens. J Immunol. 1992 Jan 1;148(1):189–196. [PubMed] [Google Scholar]
  16. Orme I. M. The kinetics of emergence and loss of mediator T lymphocytes acquired in response to infection with Mycobacterium tuberculosis. J Immunol. 1987 Jan 1;138(1):293–298. [PubMed] [Google Scholar]
  17. Ottenhoff T. H., Ab B. K., Van Embden J. D., Thole J. E., Kiessling R. The recombinant 65-kD heat shock protein of Mycobacterium bovis Bacillus Calmette-Guerin/M. tuberculosis is a target molecule for CD4+ cytotoxic T lymphocytes that lyse human monocytes. J Exp Med. 1988 Nov 1;168(5):1947–1952. doi: 10.1084/jem.168.5.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sad S., Marcotte R., Mosmann T. R. Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity. 1995 Mar;2(3):271–279. doi: 10.1016/1074-7613(95)90051-9. [DOI] [PubMed] [Google Scholar]
  19. Silva C. L., Silva M. F., Pietro R. C., Lowrie D. B. Characterization of T cells that confer a high degree of protective immunity against tuberculosis in mice after vaccination with tumor cells expressing mycobacterial hsp65. Infect Immun. 1996 Jul;64(7):2400–2407. doi: 10.1128/iai.64.7.2400-2407.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stanford J. L., Onyebujoh P. C., Rook G. A., Grange J. M., Pozniak A. Old plague, new plague, and a treatment for both? AIDS. 1993 Sep;7(9):1275–1277. [PubMed] [Google Scholar]
  21. Stanford J. L., Stanford C. A. Immunotherapy of tuberculosis with Mycobacterium vaccae NCTC 11659. Immunobiology. 1994 Oct;191(4-5):555–563. doi: 10.1016/S0171-2985(11)80462-6. [DOI] [PubMed] [Google Scholar]
  22. Zhang M., Lin Y., Iyer D. V., Gong J., Abrams J. S., Barnes P. F. T-cell cytokine responses in human infection with Mycobacterium tuberculosis. Infect Immun. 1995 Aug;63(8):3231–3234. doi: 10.1128/iai.63.8.3231-3234.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES