Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Nov;65(11):4564–4571. doi: 10.1128/iai.65.11.4564-4571.1997

Direct interactions of human natural killer cells with Cryptococcus neoformans inhibit granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha production.

J W Murphy 1, A Zhou 1, S C Wong 1
PMCID: PMC175655  PMID: 9353034

Abstract

Human natural killer (NK) cells and T lymphocytes can bind to and inhibit the growth of the yeast-like organism Cryptococcus neoformans. Binding of target cells to NK or T cells also has the potential to modulate cytokine production by the effector cells. In this study, we assessed the ability of C. neoformans to modulate NK cell production, or in some cases T-cell production, of granulocyte-macrophage colony-stimulating factor (GM-CSF) or tumor necrosis factor alpha (TNF-alpha). We found that freshly isolated human NK cells from most individuals make GM-CSF and TNF-alpha constitutively when cultured in vitro. The addition of C. neoformans to T-cell fractions which do not make GM-CSF constitutively did not affect GM-CSF production, but the addition of C. neoformans to NK cell fractions significantly reduced the amounts of GM-CSF produced in most NK cell samples. The reduction in the amount of GM-CSF in C. neoformans-NK cell cocultures could not be attributed to loss of lymphocyte viability or to C. neoformans adsorbing or degrading the cytokine and was dependent on direct contact between the NK cells and cryptococcal cells. GM-CSF was not the only cytokine to be down-regulated. TNF-alpha production was also diminished when NK cells were incubated with C. neoformans. The regulation of both cytokines was at the transcriptional level because GM-CSF and TNF-alpha mRNA levels were lower in NK cell samples incubated with C. neoformans than in NK cell samples incubated without C. neoformans. Diminished production of constitutively produced cytokines resulting from the interaction of NK cells with cryptococcal cells has the potential to affect phagocytic cells in the immediate regional environment and to damp the immune response.

Full Text

The Full Text of this article is available as a PDF (915.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anegón I., Cuturi M. C., Trinchieri G., Perussia B. Interaction of Fc receptor (CD16) ligands induces transcription of interleukin 2 receptor (CD25) and lymphokine genes and expression of their products in human natural killer cells. J Exp Med. 1988 Feb 1;167(2):452–472. doi: 10.1084/jem.167.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bajpai A., Brahmi Z. Target cell-induced inactivation of cytolytic lymphocytes. Role and regulation of CD45 and calyculin A-inhibited phosphatase in response to interleukin-2. J Biol Chem. 1994 Jul 22;269(29):18864–18869. [PubMed] [Google Scholar]
  3. Blanchard D. K., Michelini-Norris M. B., Djeu J. Y. Production of granulocyte-macrophage colony-stimulating factor by large granular lymphocytes stimulated with Candida albicans: role in activation of human neutrophil function. Blood. 1991 May 15;77(10):2259–2265. [PubMed] [Google Scholar]
  4. Bochan M. R., Brahmi Z. Target cell-directed rapid degradation of TNF-alpha messenger RNA in human cytotoxic T cells. Immunol Lett. 1994 Apr;40(1):37–42. doi: 10.1016/0165-2478(94)90203-8. [DOI] [PubMed] [Google Scholar]
  5. Chen G. H., Curtis J. L., Mody C. H., Christensen P. J., Armstrong L. R., Toews G. B. Effect of granulocyte-macrophage colony-stimulating factor on rat alveolar macrophage anticryptococcal activity in vitro. J Immunol. 1994 Jan 15;152(2):724–734. [PubMed] [Google Scholar]
  6. Collins H. L., Bancroft G. J. Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans. Eur J Immunol. 1992 Jun;22(6):1447–1454. doi: 10.1002/eji.1830220617. [DOI] [PubMed] [Google Scholar]
  7. Cuturi M. C., Anegón I., Sherman F., Loudon R., Clark S. C., Perussia B., Trinchieri G. Production of hematopoietic colony-stimulating factors by human natural killer cells. J Exp Med. 1989 Feb 1;169(2):569–583. doi: 10.1084/jem.169.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Djeu J. Y., Blanchard D. K., Richards A. L., Friedman H. Tumor necrosis factor induction by Candida albicans from human natural killer cells and monocytes. J Immunol. 1988 Dec 1;141(11):4047–4052. [PubMed] [Google Scholar]
  9. Gasson J. C. Molecular physiology of granulocyte-macrophage colony-stimulating factor. Blood. 1991 Mar 15;77(6):1131–1145. [PubMed] [Google Scholar]
  10. Gonzalez I. L., Schmickel R. D. The human 18S ribosomal RNA gene: evolution and stability. Am J Hum Genet. 1986 Apr;38(4):419–427. [PMC free article] [PubMed] [Google Scholar]
  11. Hidore M. R., Mislan T. W., Murphy J. W. Responses of murine natural killer cells to binding of the fungal target Cryptococcus neoformans. Infect Immun. 1991 Apr;59(4):1489–1499. doi: 10.1128/iai.59.4.1489-1499.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hidore M. R., Murphy J. W. Correlation of natural killer cell activity and clearance of Cryptococcus neoformans from mice after adoptive transfer of splenic nylon wool-nonadherent cells. Infect Immun. 1986 Feb;51(2):547–555. doi: 10.1128/iai.51.2.547-555.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hidore M. R., Murphy J. W. Murine natural killer cell interactions with a fungal target, Cryptococcus neoformans. Infect Immun. 1989 Jul;57(7):1990–1997. doi: 10.1128/iai.57.7.1990-1997.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hidore M. R., Murphy J. W. Natural cellular resistance of beige mice against Cryptococcus neoformans. J Immunol. 1986 Dec 1;137(11):3624–3631. [PubMed] [Google Scholar]
  15. Hidore M. R., Nabavi N., Reynolds C. W., Henkart P. A., Murphy J. W. Cytoplasmic components of natural killer cells limit the growth of Cryptococcus neoformans. J Leukoc Biol. 1990 Jul;48(1):15–26. doi: 10.1002/jlb.48.1.15. [DOI] [PubMed] [Google Scholar]
  16. Hidore M. R., Nabavi N., Sonleitner F., Murphy J. W. Murine natural killer cells are fungicidal to Cryptococcus neoformans. Infect Immun. 1991 May;59(5):1747–1754. doi: 10.1128/iai.59.5.1747-1754.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Huffnagle G. B., Toews G. B., Burdick M. D., Boyd M. B., McAllister K. S., McDonald R. A., Kunkel S. L., Strieter R. M. Afferent phase production of TNF-alpha is required for the development of protective T cell immunity to Cryptococcus neoformans. J Immunol. 1996 Nov 15;157(10):4529–4536. [PubMed] [Google Scholar]
  18. Jolly D. J., Okayama H., Berg P., Esty A. C., Filpula D., Bohlen P., Johnson G. G., Shively J. E., Hunkapillar T., Friedmann T. Isolation and characterization of a full-length expressible cDNA for human hypoxanthine phosphoribosyl transferase. Proc Natl Acad Sci U S A. 1983 Jan;80(2):477–481. doi: 10.1073/pnas.80.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee F., Yokota T., Otsuka T., Gemmell L., Larson N., Luh J., Arai K., Rennick D. Isolation of cDNA for a human granulocyte-macrophage colony-stimulating factor by functional expression in mammalian cells. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4360–4364. doi: 10.1073/pnas.82.13.4360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Levitz S. M. Activation of human peripheral blood mononuclear cells by interleukin-2 and granulocyte-macrophage colony-stimulating factor to inhibit Cryptococcus neoformans. Infect Immun. 1991 Oct;59(10):3393–3397. doi: 10.1128/iai.59.10.3393-3397.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levitz S. M., Dupont M. P. Phenotypic and functional characterization of human lymphocytes activated by interleukin-2 to directly inhibit growth of Cryptococcus neoformans in vitro. J Clin Invest. 1993 Apr;91(4):1490–1498. doi: 10.1172/JCI116354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Levitz S. M., Dupont M. P., Smail E. H. Direct activity of human T lymphocytes and natural killer cells against Cryptococcus neoformans. Infect Immun. 1994 Jan;62(1):194–202. doi: 10.1128/iai.62.1.194-202.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Levitz S. M., North E. A. gamma Interferon gene expression and release in human lymphocytes directly activated by Cryptococcus neoformans and Candida albicans. Infect Immun. 1996 May;64(5):1595–1599. doi: 10.1128/iai.64.5.1595-1599.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lipscomb M. F., Alvarellos T., Toews G. B., Tompkins R., Evans Z., Koo G., Kumar V. Role of natural killer cells in resistance to Cryptococcus neoformans infections in mice. Am J Pathol. 1987 Aug;128(2):354–361. [PMC free article] [PubMed] [Google Scholar]
  25. Murphy J. W., Cozad G. C. Immunological unresponsiveness induced by cryptococcal capsular polysaccharide assayed by the hemolytic plaque technique. Infect Immun. 1972 Jun;5(6):896–901. doi: 10.1128/iai.5.6.896-901.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Murphy J. W., Hidore M. R., Nabavi N. Binding interactions of murine natural killer cells with the fungal target Cryptococcus neoformans. Infect Immun. 1991 Apr;59(4):1476–1488. doi: 10.1128/iai.59.4.1476-1488.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Murphy J. W., Hidore M. R., Wong S. C. Direct interactions of human lymphocytes with the yeast-like organism, Cryptococcus neoformans. J Clin Invest. 1993 Apr;91(4):1553–1566. doi: 10.1172/JCI116361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murphy J. W., McDaniel D. O. In vitro reactivity of natural killer (NK) cells against Cryptococcus neoformans. J Immunol. 1982 Apr;128(4):1577–1583. [PubMed] [Google Scholar]
  29. Murphy J. W. Mechanisms of natural resistance to human pathogenic fungi. Annu Rev Microbiol. 1991;45:509–538. doi: 10.1146/annurev.mi.45.100191.002453. [DOI] [PubMed] [Google Scholar]
  30. Muth S. M., Murphy J. W. Direct anticryptococcal activity of lymphocytes from Cryptococcus neoformans-immunized mice. Infect Immun. 1995 May;63(5):1637–1644. doi: 10.1128/iai.63.5.1637-1644.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nedwin G. E., Naylor S. L., Sakaguchi A. Y., Smith D., Jarrett-Nedwin J., Pennica D., Goeddel D. V., Gray P. W. Human lymphotoxin and tumor necrosis factor genes: structure, homology and chromosomal localization. Nucleic Acids Res. 1985 Sep 11;13(17):6361–6373. doi: 10.1093/nar/13.17.6361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nevinny-Stickel C., Bettinotti M. D., Andreas A., Hinzpeter M., Mühlegger K., Schmitz G., Albert E. D. Nonradioactive HLA class II typing using polymerase chain reaction and digoxigenin-11-2'-3'-dideoxy-uridinetriphosphate-labeled oligonucleotide probes. Hum Immunol. 1991 May;31(1):7–13. doi: 10.1016/0198-8859(91)90042-8. [DOI] [PubMed] [Google Scholar]
  33. Pistoia V., Zupo S., Corcione A., Roncella S., Matera L., Ghio R., Ferrarini M. Production of colony-stimulating activity by human natural killer cells: analysis of the conditions that influence the release and detection of colony-stimulating activity. Blood. 1989 Jul;74(1):156–164. [PubMed] [Google Scholar]
  34. Scharton T. M., Scott P. Natural killer cells are a source of interferon gamma that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J Exp Med. 1993 Aug 1;178(2):567–577. doi: 10.1084/jem.178.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Smith P. D., Lamerson C. L., Banks S. M., Saini S. S., Wahl L. M., Calderone R. A., Wahl S. M. Granulocyte-macrophage colony-stimulating factor augments human monocyte fungicidal activity for Candida albicans. J Infect Dis. 1990 May;161(5):999–1005. doi: 10.1093/infdis/161.5.999. [DOI] [PubMed] [Google Scholar]
  36. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Trinchieri G. Interleukin-12 and its role in the generation of TH1 cells. Immunol Today. 1993 Jul;14(7):335–338. doi: 10.1016/0167-5699(93)90230-I. [DOI] [PubMed] [Google Scholar]
  38. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol. 1995;13:251–276. doi: 10.1146/annurev.iy.13.040195.001343. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES