Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Nov;65(11):4624–4633. doi: 10.1128/iai.65.11.4624-4633.1997

Salmonellae activate tumor necrosis factor alpha production in a human promonocytic cell line via a released polypeptide.

F Ciacci-Woolwine 1, L S Kucera 1, S H Richardson 1, N P Iyer 1, S B Mizel 1
PMCID: PMC175664  PMID: 9353043

Abstract

Invasive strains of Salmonella spp. cause both systemic and localized infections in humans. The ability to resist infection and some aspects of the tissue pathology associated with the presence of Salmonella in the gastrointestinal tract have been shown to be mediated in part by the induction of tumor necrosis factor alpha (TNF-alpha), a proinflammatory cytokine produced by activated macrophages and lymphocytes. Recent reports indicate that TNF-alpha is involved in the induction of human immunodeficiency virus replication by Salmonella in the latently infected human promonocytic cell line U1. In the present study, we investigated the effects of Salmonella on TNF-alpha production in U1 cells and a related cell line, U38. Unlike Escherichia coli or Yersinia enterocolitica, salmonellae rapidly induce TNF-alpha expression in these cells through a released factor(s). Time course experiments show that the kinetics of TNF-alpha production by U38 cells stimulated with Salmonella conditioned medium closely resemble those observed in response to live Salmonella. The observation that TNF-alpha levels are elevated by 60 min after exposure to either bacteria or their conditioned medium suggests that the soluble inducer is continuously released or shed by the bacteria and that the signal acts rapidly to increase TNF-alpha production. Furthermore, the ability to produce the TNF-alpha inducer is shared by at least four Salmonella serotypes and does not correlate with the abilities to invade and to survive within phagocytes. Treatment of active conditioned medium with trypsin, but not low pH, high temperature, or urea, significantly inhibits its TNF-alpha-inducing effect on U38 cells, a finding which points to a polypeptide product of Salmonella as the mediator of TNF-alpha production. Gel filtration chromatography of Salmonella conditioned medium reveals two peaks of activity, consistent with molecular masses of approximately 150 and 110 kDa.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreana A., Gollapudi S., Kim C. H., Gupta S. Salmonella typhimurium activates human immunodeficiency virus type 1 in chronically infected promonocytic cells by inducing tumor necrosis factor-alpha production. Biochem Biophys Res Commun. 1994 May 30;201(1):16–23. doi: 10.1006/bbrc.1994.1663. [DOI] [PubMed] [Google Scholar]
  2. Arai T., Hiromatsu K., Nishimura H., Kimura Y., Kobayashi N., Ishida H., Nimura Y., Yoshikai Y. Endogenous interleukin 10 prevents apoptosis in macrophages during Salmonella infection. Biochem Biophys Res Commun. 1995 Aug 15;213(2):600–607. doi: 10.1006/bbrc.1995.2174. [DOI] [PubMed] [Google Scholar]
  3. Arnold J. W., Klimpel G. R., Niesel D. W. Tumor necrosis factor (TNF alpha) regulates intestinal mucus production during salmonellosis. Cell Immunol. 1993 Oct 15;151(2):336–344. doi: 10.1006/cimm.1993.1243. [DOI] [PubMed] [Google Scholar]
  4. Arnold J. W., Niesel D. W., Annable C. R., Hess C. B., Asuncion M., Cho Y. J., Peterson J. W., Klimpel G. R. Tumor necrosis factor-alpha mediates the early pathology in Salmonella infection of the gastrointestinal tract. Microb Pathog. 1993 Mar;14(3):217–227. doi: 10.1006/mpat.1993.1021. [DOI] [PubMed] [Google Scholar]
  5. Averill L., Toossi Z., Aung H., Boom W. H., Ellner J. J. Regulation of production of tumor necrosis factor alpha in monocytes stimulated by the 30-kilodalton antigen of Mycobacterium tuberculosis. Infect Immun. 1995 Aug;63(8):3206–3208. doi: 10.1128/iai.63.8.3206-3208.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beuscher H. U., Rödel F., Forsberg A., Röllinghoff M. Bacterial evasion of host immune defense: Yersinia enterocolitica encodes a suppressor for tumor necrosis factor alpha expression. Infect Immun. 1995 Apr;63(4):1270–1277. doi: 10.1128/iai.63.4.1270-1277.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beutler B., Cerami A. The biology of cachectin/TNF--a primary mediator of the host response. Annu Rev Immunol. 1989;7:625–655. doi: 10.1146/annurev.iy.07.040189.003205. [DOI] [PubMed] [Google Scholar]
  8. Conaldi P. G., Serra C., Dolei A., Basolo F., Falcone V., Mariani G., Speziale P., Toniolo A. Productive HIV-1 infection of human vascular endothelial cells requires cell proliferation and is stimulated by combined treatment with interleukin-1 beta plus tumor necrosis factor-alpha. J Med Virol. 1995 Dec;47(4):355–363. doi: 10.1002/jmv.1890470411. [DOI] [PubMed] [Google Scholar]
  9. Dorman C. J., Chatfield S., Higgins C. F., Hayward C., Dougan G. Characterization of porin and ompR mutants of a virulent strain of Salmonella typhimurium: ompR mutants are attenuated in vivo. Infect Immun. 1989 Jul;57(7):2136–2140. doi: 10.1128/iai.57.7.2136-2140.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eckmann L., Fierer J., Kagnoff M. F. Genetically resistant (Ityr) and susceptible (Itys) congenic mouse strains show similar cytokine responses following infection with Salmonella dublin. J Immunol. 1996 Apr 15;156(8):2894–2900. [PubMed] [Google Scholar]
  11. Eckmann L., Kagnoff M. F., Fierer J. Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun. 1993 Nov;61(11):4569–4574. doi: 10.1128/iai.61.11.4569-4574.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fan S. T., Hsia K., Edgington T. S. Upregulation of human immunodeficiency virus-1 in chronically infected monocytic cell line by both contact with endothelial cells and cytokines. Blood. 1994 Sep 1;84(5):1567–1572. [PubMed] [Google Scholar]
  13. Felber B. K., Pavlakis G. N. A quantitative bioassay for HIV-1 based on trans-activation. Science. 1988 Jan 8;239(4836):184–187. doi: 10.1126/science.3422113. [DOI] [PubMed] [Google Scholar]
  14. Finnegan A., Roebuck K. A., Nakai B. E., Gu D. S., Rabbi M. F., Song S., Landay A. L. IL-10 cooperates with TNF-alpha to activate HIV-1 from latently and acutely infected cells of monocyte/macrophage lineage. J Immunol. 1996 Jan 15;156(2):841–851. [PubMed] [Google Scholar]
  15. Folks T. M., Justement J., Kinter A., Dinarello C. A., Fauci A. S. Cytokine-induced expression of HIV-1 in a chronically infected promonocyte cell line. Science. 1987 Nov 6;238(4828):800–802. doi: 10.1126/science.3313729. [DOI] [PubMed] [Google Scholar]
  16. Galdiero F., de L'ero G. C., Benedetto N., Galdiero M., Tufano M. A. Release of cytokines induced by Salmonella typhimurium porins. Infect Immun. 1993 Jan;61(1):155–161. doi: 10.1128/iai.61.1.155-161.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Galdiero M., Cipollaro de L'ero G., Donnarumma G., Marcatili A., Galdiero F. Interleukin-1 and interleukin-6 gene expression in human monocytes stimulated with Salmonella typhimurium porins. Immunology. 1995 Dec;86(4):612–619. [PMC free article] [PubMed] [Google Scholar]
  18. Granowitz E. V., Porat R., Mier J. W., Orencole S. F., Kaplanski G., Lynch E. A., Ye K., Vannier E., Wolff S. M., Dinarello C. A. Intravenous endotoxin suppresses the cytokine response of peripheral blood mononuclear cells of healthy humans. J Immunol. 1993 Aug 1;151(3):1637–1645. [PubMed] [Google Scholar]
  19. Granowitz E. V., Saget B. M., Wang M. Z., Dinarello C. A., Skolnik P. R. Interleukin 1 induces HIV-1 expression in chronically infected U1 cells: blockade by interleukin 1 receptor antagonist and tumor necrosis factor binding protein type 1. Mol Med. 1995 Sep;1(6):667–677. [PMC free article] [PubMed] [Google Scholar]
  20. Herbein G., Keshav S., Collin M., Montaner L. J., Gordon S. HIV-1 induces tumour necrosis factor and IL-1 gene expression in primary human macrophages independent of productive infection. Clin Exp Immunol. 1994 Mar;95(3):442–449. doi: 10.1111/j.1365-2249.1994.tb07016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hoiseth S. K., Stocker B. A. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981 May 21;291(5812):238–239. doi: 10.1038/291238a0. [DOI] [PubMed] [Google Scholar]
  22. Jotwani R., Tanaka Y., Watanabe K., Tanaka K., Kato N., Ueno K. Cytokine stimulation during Salmonella typhimurium sepsis in Itys mice. J Med Microbiol. 1995 May;42(5):348–352. doi: 10.1099/00222615-42-5-348. [DOI] [PubMed] [Google Scholar]
  23. Jung H. C., Eckmann L., Yang S. K., Panja A., Fierer J., Morzycka-Wroblewska E., Kagnoff M. F. A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J Clin Invest. 1995 Jan;95(1):55–65. doi: 10.1172/JCI117676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kitano K., Rivas C. I., Baldwin G. C., Vera J. C., Golde D. W. Tumor necrosis factor-dependent production of human immunodeficiency virus 1 in chronically infected HL-60 cells. Blood. 1993 Nov 1;82(9):2742–2748. [PubMed] [Google Scholar]
  25. Klimpel G. R., Asuncion M., Haithcoat J., Niesel D. W. Cholera toxin and Salmonella typhimurium induce different cytokine profiles in the gastrointestinal tract. Infect Immun. 1995 Mar;63(3):1134–1137. doi: 10.1128/iai.63.3.1134-1137.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kohbata S., Yokoyama H., Yabuuchi E. Cytopathogenic effect of Salmonella typhi GIFU 10007 on M cells of murine ileal Peyer's patches in ligated ileal loops: an ultrastructural study. Microbiol Immunol. 1986;30(12):1225–1237. doi: 10.1111/j.1348-0421.1986.tb03055.x. [DOI] [PubMed] [Google Scholar]
  27. Kostyal D. A., Butler G. H., Beezhold D. H. Mycoplasma hyorhinis molecules that induce tumor necrosis factor alpha secretion by human monocytes. Infect Immun. 1995 Oct;63(10):3858–3863. doi: 10.1128/iai.63.10.3858-3863.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lederman M. M., Georges D. L., Kusner D. J., Mudido P., Giam C. Z., Toossi Z. Mycobacterium tuberculosis and its purified protein derivative activate expression of the human immunodeficiency virus. J Acquir Immune Defic Syndr. 1994 Jul;7(7):727–733. [PubMed] [Google Scholar]
  29. Levy J. A. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev. 1993 Mar;57(1):183–289. doi: 10.1128/mr.57.1.183-289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lindgren S. W., Stojiljkovic I., Heffron F. Macrophage killing is an essential virulence mechanism of Salmonella typhimurium. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4197–4201. doi: 10.1073/pnas.93.9.4197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Matsui K., Arai T. The comparison of cell-mediated immunity induced by immunization with porin, viable cells and killed cells of Salmonella typhimurium. Microbiol Immunol. 1992;36(3):269–278. doi: 10.1111/j.1348-0421.1992.tb01664.x. [DOI] [PubMed] [Google Scholar]
  32. Mellors J. W., Griffith B. P., Ortiz M. A., Landry M. L., Ryan J. L. Tumor necrosis factor-alpha/cachectin enhances human immunodeficiency virus type 1 replication in primary macrophages. J Infect Dis. 1991 Jan;163(1):78–82. doi: 10.1093/infdis/163.1.78. [DOI] [PubMed] [Google Scholar]
  33. Meselson M., Yuan R. DNA restriction enzyme from E. coli. Nature. 1968 Mar 23;217(5134):1110–1114. doi: 10.1038/2171110a0. [DOI] [PubMed] [Google Scholar]
  34. Miller V. L., Beer K. B., Loomis W. P., Olson J. A., Miller S. I. An unusual pagC::TnphoA mutation leads to an invasion- and virulence-defective phenotype in Salmonellae. Infect Immun. 1992 Sep;60(9):3763–3770. doi: 10.1128/iai.60.9.3763-3770.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Mizel S. B., Kucera L. S., Richardson S. H., Ciacci F., Iyer N. P. Regulation of macrophage activation and human immunodeficiency virus production by invasive Salmonella strains. Infect Immun. 1995 May;63(5):1820–1826. doi: 10.1128/iai.63.5.1820-1826.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Morrissey P. J., Charrier K., Vogel S. N. Exogenous tumor necrosis factor alpha and interleukin-1 alpha increase resistance to Salmonella typhimurium: efficacy is influenced by the Ity and Lps loci. Infect Immun. 1995 Aug;63(8):3196–3198. doi: 10.1128/iai.63.8.3196-3198.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Munoz C., Carlet J., Fitting C., Misset B., Blériot J. P., Cavaillon J. M. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest. 1991 Nov;88(5):1747–1754. doi: 10.1172/JCI115493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Nakano Y., Onozuka K., Terada Y., Shinomiya H., Nakano M. Protective effect of recombinant tumor necrosis factor-alpha in murine salmonellosis. J Immunol. 1990 Mar 1;144(5):1935–1941. [PubMed] [Google Scholar]
  39. Nauciel C., Espinasse-Maes F. Role of gamma interferon and tumor necrosis factor alpha in resistance to Salmonella typhimurium infection. Infect Immun. 1992 Feb;60(2):450–454. doi: 10.1128/iai.60.2.450-454.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Owen R. L. M cells--entryways of opportunity for enteropathogens. J Exp Med. 1994 Jul 1;180(1):7–9. doi: 10.1084/jem.180.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Pace J., Hayman M. J., Galán J. E. Signal transduction and invasion of epithelial cells by S. typhimurium. Cell. 1993 Feb 26;72(4):505–514. doi: 10.1016/0092-8674(93)90070-7. [DOI] [PubMed] [Google Scholar]
  42. Peterson P. K., Gekker G., Chao C. C., Hu S. X., Edelman C., Balfour H. H., Jr, Verhoef J. Human cytomegalovirus-stimulated peripheral blood mononuclear cells induce HIV-1 replication via a tumor necrosis factor-alpha-mediated mechanism. J Clin Invest. 1992 Feb;89(2):574–580. doi: 10.1172/JCI115623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Poli G., Fauci A. S. Cytokine modulation of HIV expression. Semin Immunol. 1993 Jun;5(3):165–173. doi: 10.1006/smim.1993.1020. [DOI] [PubMed] [Google Scholar]
  44. Poli G., Kinter A. L., Fauci A. S. Interleukin 1 induces expression of the human immunodeficiency virus alone and in synergy with interleukin 6 in chronically infected U1 cells: inhibition of inductive effects by the interleukin 1 receptor antagonist. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):108–112. doi: 10.1073/pnas.91.1.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Portnoy D. A., Moseley S. L., Falkow S. Characterization of plasmids and plasmid-associated determinants of Yersinia enterocolitica pathogenesis. Infect Immun. 1981 Feb;31(2):775–782. doi: 10.1128/iai.31.2.775-782.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Ramarathinam L., Shaban R. A., Niesel D. W., Klimpel G. R. Interferon gamma (IFN-gamma) production by gut-associated lymphoid tissue and spleen following oral Salmonella typhimurium challenge. Microb Pathog. 1991 Nov;11(5):347–356. doi: 10.1016/0882-4010(91)90020-b. [DOI] [PubMed] [Google Scholar]
  47. Stone B. J., Garcia C. M., Badger J. L., Hassett T., Smith R. I., Miller V. L. Identification of novel loci affecting entry of Salmonella enteritidis into eukaryotic cells. J Bacteriol. 1992 Jun;174(12):3945–3952. doi: 10.1128/jb.174.12.3945-3952.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vowels B. R., Yang S., Leyden J. J. Induction of proinflammatory cytokines by a soluble factor of Propionibacterium acnes: implications for chronic inflammatory acne. Infect Immun. 1995 Aug;63(8):3158–3165. doi: 10.1128/iai.63.8.3158-3165.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yamaguchi S., Fujita H., Sugata K., Taira T., Iino T. Genetic analysis of H2, the structural gene for phase-2 flagellin in Salmonella. J Gen Microbiol. 1984 Feb;130(2):255–265. doi: 10.1099/00221287-130-2-255. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES