Skip to main content
Journal of Epidemiology and Community Health logoLink to Journal of Epidemiology and Community Health
. 1998 Mar;52(3):142–152. doi: 10.1136/jech.52.3.142

Childhood leg length and adult mortality: follow up of the Carnegie (Boyd Orr) Survey of Diet and Health in Pre-war Britain

D J Gunnell, S Davey, S Frankel, K Nanchahal, F E Braddon, J Pemberton, T J Peters
PMCID: PMC1756683  PMID: 9616418

Abstract

OBJECTIVE: To investigate the relation between childhood height, its components--leg length and trunk length--and mortality in adulthood. DESIGN: Cohort study based on the Carnegie (Boyd Orr) Survey of diet and health in pre-war Britain, 1937-9. SETTING: The 14 centres in England and Scotland that participated in the Carnegie Survey and where children were examined. Scottish centres: Aberdeen, Dundee, West Wemyss, Coaltown of Wemyss, Hopeman, Methlick, Tarves, Barthol Chapel. English Centres: Liverpool, York-shire, Barrow in Furness, Wisbech, Fulham, and Bethnal Green. SUBJECTS: 2990 boys and girls aged between 2 years and 14 years 9 months when they were examined in 1937-9. These children were drawn from 1134 families who underwent a one week assessment of family diet and home circumstances. Of these, 2547 (85%) have been traced and flagged using the NHS Central Register. MAIN OUTCOME MEASURES: Age adjusted overall, coronary heart disease, and cancer mortality in men and women in relation to age and sex specific z scores for height, leg length, and trunk length. All analyses were adjusted for the possible confounding effects of childhood and adult socioeconomic circumstances and childhood diet. RESULTS: Leg length was the component of childhood height most strongly associated with socioeconomic and dietary exposures. There was no significant relation between childhood height and overall mortality. Height-mortality relations were observed in relation to both coronary heart disease (CHD) and cancer. Leg length was the component of height most strongly related to cause specific mortality. In men and women CHD mortality increased with decreasing childhood leg length. Men in the lowest leg length quintile had a relative risk (RR) of 2.5 (95% CI 1.0 to 6.2) compared to those with the longest legs (linear trend p = 0.14). Similarly, women in the lowest leg length quintile had a RR of 3.9 (95% CI 0.8 to 19.0; linear trend p < 0.01). Adjustment for childhood and adult socioeconomic circumstances had little effect on these trends. In men, but not women, those who as children had long legs experienced increased cancer mortality. The significant relations between anthropometry and both CHD and cancer mortality were restricted to those aged < 8 years when measured. CONCLUSIONS: These findings suggest that adverse diet and living conditions in childhood, for which leg length seems to be a particularly sensitive indicator, are associated with increased risk of CHD in adulthood and possibly reduced cancer risk. It is likely that these influences operate after birth, during the first few years of life.

 

Full Text

The Full Text of this article is available as a PDF (152.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albanes D. Caloric intake, body weight, and cancer: a review. Nutr Cancer. 1987;9(4):199–217. doi: 10.1080/01635588709513929. [DOI] [PubMed] [Google Scholar]
  2. Albanes D., Jones D. Y., Schatzkin A., Micozzi M. S., Taylor P. R. Adult stature and risk of cancer. Cancer Res. 1988 Mar 15;48(6):1658–1662. [PubMed] [Google Scholar]
  3. Albanes D., Winick M. Are cell number and cell proliferation risk factors for cancer? J Natl Cancer Inst. 1988 Jul 20;80(10):772–774. doi: 10.1093/jnci/80.10.772. [DOI] [PubMed] [Google Scholar]
  4. Allebeck P., Bergh C. Height, body mass index and mortality: do social factors explain the association? Public Health. 1992 Sep;106(5):375–382. doi: 10.1016/s0033-3506(05)80186-6. [DOI] [PubMed] [Google Scholar]
  5. Billewicz W. Z., Thomson A. M., Fellowes H. M. A longitudinal study of growth in Newcastle upon Tyne adolescents. Ann Hum Biol. 1983 Mar-Apr;10(2):125–133. doi: 10.1080/03014468300006271. [DOI] [PubMed] [Google Scholar]
  6. Chyou P. H., Nomura A. M., Stemmermann G. N. A prospective study of weight, body mass index and other anthropometric measurements in relation to site-specific cancers. Int J Cancer. 1994 May 1;57(3):313–317. doi: 10.1002/ijc.2910570304. [DOI] [PubMed] [Google Scholar]
  7. Damon A., Damon S. T., Harpending H. C., Kannel W. B. Predicting coronary heart disease from body measurements of Framingham males. J Chronic Dis. 1969 Apr;21(11):781–802. doi: 10.1016/0021-9681(69)90025-3. [DOI] [PubMed] [Google Scholar]
  8. GREULICH W. W. A comparison of the physical growth and development of American-born and native Japanese children. Am J Phys Anthropol. 1957 Dec;15(4):489–515. doi: 10.1002/ajpa.1330150403. [DOI] [PubMed] [Google Scholar]
  9. Gliksman M. D., Kawachi I., Hunter D., Colditz G. A., Manson J. E., Stampfer M. J., Speizer F. E., Willett W. C., Hennekens C. H. Childhood socioeconomic status and risk of cardiovascular disease in middle aged US women: a prospective study. J Epidemiol Community Health. 1995 Feb;49(1):10–15. doi: 10.1136/jech.49.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greenwald P., Damon A., Kirmss V., Polan A. K. Physical and demographic features of men before developing cancer of the prostate. J Natl Cancer Inst. 1974 Aug;53(2):341–346. doi: 10.1093/jnci/53.2.341. [DOI] [PubMed] [Google Scholar]
  11. Gunnell D. J., Frankel S., Nanchahal K., Braddon F. E., Smith G. D. Lifecourse exposure and later disease: a follow-up study based on a survey of family diet and health in pre-war Britain (1937-1939). Public Health. 1996 Mar;110(2):85–94. doi: 10.1016/s0033-3506(96)80052-7. [DOI] [PubMed] [Google Scholar]
  12. HIGGINS I. T., COCHRANE A. L., THOMAS A. J. EPIDEMIOLOGICAL STUDIES OF CORONARY DISEASE. Br J Prev Soc Med. 1963 Oct;17:153–165. doi: 10.1136/jech.17.4.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hebert P. R., Rich-Edwards J. W., Manson J. E., Ridker P. M., Cook N. R., O'Connor G. T., Buring J. E., Hennekens C. H. Height and incidence of cardiovascular disease in male physicians. Circulation. 1993 Oct;88(4 Pt 1):1437–1443. doi: 10.1161/01.cir.88.4.1437. [DOI] [PubMed] [Google Scholar]
  14. Hyndman J. C., Holman C. D., Hockey R. L., Donovan R. J., Corti B., Rivera J. Misclassification of social disadvantage based on geographical areas: comparison of postcode and collector's district analyses. Int J Epidemiol. 1995 Feb;24(1):165–176. doi: 10.1093/ije/24.1.165. [DOI] [PubMed] [Google Scholar]
  15. Kuh D., Smith G. D. When is mortality risk determined? Historical insights into a current debate. Soc Hist Med. 1993 Apr;6(1):101–123. [PubMed] [Google Scholar]
  16. LEITCH I. Growth and health. Br J Nutr. 1951;5(1):142–151. doi: 10.1079/bjn19510017. [DOI] [PubMed] [Google Scholar]
  17. Le Marchand L., Kolonel L. N., Earle M. E., Mi M. P. Body size at different periods of life and breast cancer risk. Am J Epidemiol. 1988 Jul;128(1):137–152. doi: 10.1093/oxfordjournals.aje.a114936. [DOI] [PubMed] [Google Scholar]
  18. Le Marchand L., Wilkens L. R., Mi M. P. Early-age body size, adult weight gain and endometrial cancer risk. Int J Cancer. 1991 Jul 30;48(6):807–811. doi: 10.1002/ijc.2910480603. [DOI] [PubMed] [Google Scholar]
  19. Leon D. A., Smith G. D., Shipley M., Strachan D. Adult height and mortality in London: early life, socioeconomic confounding, or shrinkage? J Epidemiol Community Health. 1995 Feb;49(1):5–9. doi: 10.1136/jech.49.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Marmot M. G., Shipley M. J., Rose G. Inequalities in death--specific explanations of a general pattern? Lancet. 1984 May 5;1(8384):1003–1006. doi: 10.1016/s0140-6736(84)92337-7. [DOI] [PubMed] [Google Scholar]
  21. Miller F. J., Billewicz W. Z., Thomson A. M. Growth from birth to adult life of 442 Newcastle upon Tyne children. Br J Prev Soc Med. 1972 Nov;26(4):224–230. doi: 10.1136/jech.26.4.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nieto F. J., Szklo M., Comstock G. W. Childhood weight and growth rate as predictors of adult mortality. Am J Epidemiol. 1992 Jul 15;136(2):201–213. doi: 10.1093/oxfordjournals.aje.a116486. [DOI] [PubMed] [Google Scholar]
  23. Notkola V., Punsar S., Karvonen M. J., Haapakoski J. Socio-economic conditions in childhood and mortality and morbidity caused by coronary heart disease in adulthood in rural Finland. Soc Sci Med. 1985;21(5):517–523. doi: 10.1016/0277-9536(85)90035-8. [DOI] [PubMed] [Google Scholar]
  24. Ounsted M., Moar V. A. Proportionality changes in the first year of life; the influence of weight for gestational age at birth. Acta Paediatr Scand. 1986 Sep;75(5):811–818. doi: 10.1111/j.1651-2227.1986.tb10295.x. [DOI] [PubMed] [Google Scholar]
  25. Paffenbarger R. S., Jr, Wing A. L. Chronic disease in former college students. X. The effects of single and multiple characteristics on risk of fatal coronary heart disease. Am J Epidemiol. 1969 Dec;90(6):527–535. doi: 10.1093/oxfordjournals.aje.a121099. [DOI] [PubMed] [Google Scholar]
  26. Patel P., Mendall M. A., Carrington D., Strachan D. P., Leatham E., Molineaux N., Levy J., Blakeston C., Seymour C. A., Camm A. J. Association of Helicobacter pylori and Chlamydia pneumoniae infections with coronary heart disease and cardiovascular risk factors. BMJ. 1995 Sep 16;311(7007):711–714. doi: 10.1136/bmj.311.7007.711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Peck A. M., Vågerö D. H. Adult body height, self perceived health and mortality in the Swedish population. J Epidemiol Community Health. 1989 Dec;43(4):380–384. doi: 10.1136/jech.43.4.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Peck M. N., Lundberg O. Short stature as an effect of economic and social conditions in childhood. Soc Sci Med. 1995 Sep;41(5):733–738. doi: 10.1016/0277-9536(94)00379-8. [DOI] [PubMed] [Google Scholar]
  29. Phillimore P., Beattie A., Townsend P. Widening inequality of health in northern England, 1981-91. BMJ. 1994 Apr 30;308(6937):1125–1128. doi: 10.1136/bmj.308.6937.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rich-Edwards J. W., Manson J. E., Stampfer M. J., Colditz G. A., Willett W. C., Rosner B., Speizer F. E., Hennekens C. H. Height and the risk of cardiovascular disease in women. Am J Epidemiol. 1995 Nov 1;142(9):909–917. doi: 10.1093/oxfordjournals.aje.a117738. [DOI] [PubMed] [Google Scholar]
  31. Rona R. J., Chinn S. Genetic and environmental influences on growth. J Med Screen. 1995;2(3):133–139. doi: 10.1177/096914139500200307. [DOI] [PubMed] [Google Scholar]
  32. Rona R. J., Swan A. V., Altman D. G. Social factors and height of primary schoolchildren in England and Scotland. J Epidemiol Community Health. 1978 Sep;32(3):147–154. doi: 10.1136/jech.32.3.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Schwartz J. E., Friedman H. S., Tucker J. S., Tomlinson-Keasey C., Wingard D. L., Criqui M. H. Sociodemographic and psychosocial factors in childhood as predictors of adult mortality. Am J Public Health. 1995 Sep;85(9):1237–1245. doi: 10.2105/ajph.85.9.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Smith G. D., Leon D., Shipley M. J., Rose G. Socioeconomic differentials in cancer among men. Int J Epidemiol. 1991 Jun;20(2):339–345. doi: 10.1093/ije/20.2.339. [DOI] [PubMed] [Google Scholar]
  35. Tanner J. M., Hayashi T., Preece M. A., Cameron N. Increase in length of leg relative to trunk in Japanese children and adults from 1957 to 1977: comparison with British and with Japanese Americans. Ann Hum Biol. 1982 Sep-Oct;9(5):411–423. doi: 10.1080/03014468200005951. [DOI] [PubMed] [Google Scholar]
  36. Tanner J. M., Whitehouse R. H., Takaishi M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. I. Arch Dis Child. 1966 Oct;41(219):454–471. doi: 10.1136/adc.41.219.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thomson A. M. Fourth Boyd Orr Memorial Lecture. Problems and politics in nutritional surveillance. Proc Nutr Soc. 1978 Dec;37(3):317–332. doi: 10.1079/pns19780044. [DOI] [PubMed] [Google Scholar]
  38. Vatten L. J., Kvinnsland S. Body height and risk of breast cancer. A prospective study of 23,831 Norwegian women. Br J Cancer. 1990 Jun;61(6):881–885. doi: 10.1038/bjc.1990.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Vågerö D., Leon D. Ischaemic heart disease and low birth weight: a test of the fetal-origins hypothesis from the Swedish Twin Registry. Lancet. 1994 Jan 29;343(8892):260–263. doi: 10.1016/s0140-6736(94)91112-6. [DOI] [PubMed] [Google Scholar]
  40. Waaler H. T. Height, weight and mortality. The Norwegian experience. Acta Med Scand Suppl. 1984;679:1–56. doi: 10.1111/j.0954-6820.1984.tb12901.x. [DOI] [PubMed] [Google Scholar]
  41. Walker M., Shaper A. G., Phillips A. N., Cook D. G. Short stature, lung function and risk of a heart attack. Int J Epidemiol. 1989 Sep;18(3):602–606. doi: 10.1093/ije/18.3.602. [DOI] [PubMed] [Google Scholar]
  42. Watt G. C., Hart C. L., Hole D. J., Smith G. D., Gillis C. R., Hawthorne V. M. Risk factors for cardiorespiratory and all cause mortality in men and women in urban Scotland: 15 year follow up. Scott Med J. 1995 Aug;40(4):108–112. doi: 10.1177/003693309504000403. [DOI] [PubMed] [Google Scholar]
  43. Yao C. H., Slattery M. L., Jacobs D. R., Jr, Folsom A. R., Nelson E. T. Anthropometric predictors of coronary heart disease and total mortality: findings from the US Railroad Study. Am J Epidemiol. 1991 Dec 1;134(11):1278–1289. doi: 10.1093/oxfordjournals.aje.a116031. [DOI] [PubMed] [Google Scholar]
  44. Yarnell J. W., Limb E. S., Layzell J. M., Baker I. A. Height: a risk marker for ischaemic heart disease: prospective results from the Caerphilly and Speedwell Heart Disease Studies. Eur Heart J. 1992 Dec;13(12):1602–1605. doi: 10.1093/oxfordjournals.eurheartj.a060111. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Epidemiology and Community Health are provided here courtesy of BMJ Publishing Group

RESOURCES