Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Nov;65(11):4784–4789. doi: 10.1128/iai.65.11.4784-4789.1997

Integrin CR3 mediates the binding of nonspecifically opsonized Borrelia burgdorferi to human phagocytes and mammalian cells.

M Cinco 1, R Murgia 1, G Presani 1, S Perticarari 1
PMCID: PMC175686  PMID: 9353065

Abstract

Like other pathogens, the spirochete Borrelia burgdorferi, the agent of Lyme disease, possesses multiple pathways for cell binding; adhesion to phagocytic cells is of particular interest since it reportedly occurs even in the absence of specific antibodies. This study sets out to investigate how B. burgdorferi binds to human polymorphonuclear leukocytes (PMNs) when an exogenous complement is added and how the CR3 complement receptor, known as Mac-1 or alpha(m)beta2 integrin, is involved in the binding process. Experiments performed on PMNs and CHO Mac-1-expressing cells demonstrate that binding is inhibited by monoclonal anti-iC3b site antibodies, fibrinogen, and N-acetyl-D-glucosamine. These findings, which are not present with non-Mac-transfected CHO cells, indicate that the integrin alpha(m)beta2 acts as a receptor for spirochetes in nonimmune phagocytosis; furthermore, binding occurs on different domains of the CD11b subunit, involving the iC3b site and the lectin domain. The interaction of B. burgdorferi with alpha(m)beta2 integrin adds a novel pathway to Borrelia-phagocyte binding; not only does this binding affect the early stages of phagocytosis, but also it can influence the effector intracellular mechanisms which are activated by the beta2 integrin, as are the cytotoxic mechanisms.

Full Text

The Full Text of this article is available as a PDF (870.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asbrink E., Hovmark A. Successful cultivation of spirochetes from skin lesions of patients with erythema chronicum migrans Afzelius and acrodermatitis chronica atrophicans. Acta Pathol Microbiol Immunol Scand B. 1985 Apr;93(2):161–163. doi: 10.1111/j.1699-0463.1985.tb02870.x. [DOI] [PubMed] [Google Scholar]
  2. Backenson P. B., Coleman J. L., Benach J. L. Borrelia burgdorferi shows specificity of binding to glycosphingolipids. Infect Immun. 1995 Aug;63(8):2811–2817. doi: 10.1128/iai.63.8.2811-2817.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Banfi E., Cinco M., Perticarari S., Presani G. Rapid flow cytometric studies of Borrelia burgdorferi phagocytosis by human polymorphonuclear leukocytes. J Appl Bacteriol. 1989 Jul;67(1):37–45. doi: 10.1111/j.1365-2672.1989.tb04952.x. [DOI] [PubMed] [Google Scholar]
  4. Benach J. L., Fleit H. B., Habicht G. S., Coleman J. L., Bosler E. M., Lane B. P. Interactions of phagocytes with the Lyme disease spirochete: role of the Fc receptor. J Infect Dis. 1984 Oct;150(4):497–507. doi: 10.1093/infdis/150.4.497. [DOI] [PubMed] [Google Scholar]
  5. Cinco M., Murgia R., Perticarari S., Presani G. Simultaneous measurement by flow cytometry of phagocytosis and metabolic burst induced in phagocytic cells in whole blood by Borrelia burgdorferi. FEMS Microbiol Lett. 1994 Sep 15;122(1-2):187–193. doi: 10.1111/j.1574-6968.1994.tb07163.x. [DOI] [PubMed] [Google Scholar]
  6. Coburn J., Leong J. M., Erban J. K. Integrin alpha IIb beta 3 mediates binding of the Lyme disease agent Borrelia burgdorferi to human platelets. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7059–7063. doi: 10.1073/pnas.90.15.7059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diamond M. S., Garcia-Aguilar J., Bickford J. K., Corbi A. L., Springer T. A. The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol. 1993 Feb;120(4):1031–1043. doi: 10.1083/jcb.120.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Diamond M. S., Springer T. A. A subpopulation of Mac-1 (CD11b/CD18) molecules mediates neutrophil adhesion to ICAM-1 and fibrinogen. J Cell Biol. 1993 Jan;120(2):545–556. doi: 10.1083/jcb.120.2.545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Drevets D. A., Campbell P. A. Roles of complement and complement receptor type 3 in phagocytosis of Listeria monocytogenes by inflammatory mouse peritoneal macrophages. Infect Immun. 1991 Aug;59(8):2645–2652. doi: 10.1128/iai.59.8.2645-2652.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hondalus M. K., Diamond M. S., Rosenthal L. A., Springer T. A., Mosser D. M. The intracellular bacterium Rhodococcus equi requires Mac-1 to bind to mammalian cells. Infect Immun. 1993 Jul;61(7):2919–2929. doi: 10.1128/iai.61.7.2919-2929.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hulínská D., Volf P., Grubhoffer L. Characterization of Borrelia burgdorferi glycoconjugates and surface carbohydrates. Zentralbl Bakteriol. 1992 Apr;276(4):473–480. doi: 10.1016/s0934-8840(11)80672-9. [DOI] [PubMed] [Google Scholar]
  12. Isaacs R. D. Borrelia burgdorferi bind to epithelial cell proteoglycans. J Clin Invest. 1994 Feb;93(2):809–819. doi: 10.1172/JCI117035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kochi S. K., Johnson R. C. Role of immunoglobulin G in killing of Borrelia burgdorferi by the classical complement pathway. Infect Immun. 1988 Feb;56(2):314–321. doi: 10.1128/iai.56.2.314-321.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Leong J. M., Morrissey P. E., Ortega-Barria E., Pereira M. E., Coburn J. Hemagglutination and proteoglycan binding by the Lyme disease spirochete, Borrelia burgdorferi. Infect Immun. 1995 Mar;63(3):874–883. doi: 10.1128/iai.63.3.874-883.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Montgomery R. R., Malawista S. E. Entry of Borrelia burgdorferi into macrophages is end-on and leads to degradation in lysosomes. Infect Immun. 1996 Jul;64(7):2867–2872. doi: 10.1128/iai.64.7.2867-2872.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Montgomery R. R., Nathanson M. H., Malawista S. E. Fc- and non-Fc-mediated phagocytosis of Borrelia burgdorferi by macrophages. J Infect Dis. 1994 Oct;170(4):890–893. doi: 10.1093/infdis/170.4.890. [DOI] [PubMed] [Google Scholar]
  17. Montgomery R. R., Nathanson M. H., Malawista S. E. The fate of Borrelia burgdorferi, the agent for Lyme disease, in mouse macrophages. Destruction, survival, recovery. J Immunol. 1993 Feb 1;150(3):909–915. [PubMed] [Google Scholar]
  18. Mosser D. M., Edelson P. J. The mouse macrophage receptor for C3bi (CR3) is a major mechanism in the phagocytosis of Leishmania promastigotes. J Immunol. 1985 Oct;135(4):2785–2789. [PubMed] [Google Scholar]
  19. Payne N. R., Horwitz M. A. Phagocytosis of Legionella pneumophila is mediated by human monocyte complement receptors. J Exp Med. 1987 Nov 1;166(5):1377–1389. doi: 10.1084/jem.166.5.1377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Peterson P. K., Clawson C. C., Lee D. A., Garlich D. J., Quie P. G., Johnson R. C. Human phagocyte interactions with the Lyme disease spirochete. Infect Immun. 1984 Nov;46(2):608–611. doi: 10.1128/iai.46.2.608-611.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ross G. D., Cain J. A., Myones B. L., Newman S. L., Lachmann P. J. Specificity of membrane complement receptor type three (CR3) for beta-glucans. Complement. 1987;4(2):61–74. doi: 10.1159/000463010. [DOI] [PubMed] [Google Scholar]
  22. Sambri V., Stefanelli C., Cevenini R. Detection of glycoproteins in Borrelia burgdorferi. Arch Microbiol. 1992;157(3):205–208. doi: 10.1007/BF00245150. [DOI] [PubMed] [Google Scholar]
  23. Schnur R. A., Newman S. L. The respiratory burst response to Histoplasma capsulatum by human neutrophils. Evidence for intracellular trapping of superoxide anion. J Immunol. 1990 Jun 15;144(12):4765–4772. [PubMed] [Google Scholar]
  24. Sutterwala F. S., Rosenthal L. A., Mosser D. M. Cooperation between CR1 (CD35) and CR3 (CD 11b/CD18) in the binding of complement-opsonized particles. J Leukoc Biol. 1996 Jun;59(6):883–890. doi: 10.1002/jlb.59.6.883. [DOI] [PubMed] [Google Scholar]
  25. Thornton B. P., Vetvicka V., Pitman M., Goldman R. C., Ross G. D. Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol. 1996 Feb 1;156(3):1235–1246. [PubMed] [Google Scholar]
  26. Vetvicka V., Thornton B. P., Ross G. D. Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. J Clin Invest. 1996 Jul 1;98(1):50–61. doi: 10.1172/JCI118777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wright S. D., Levin S. M., Jong M. T., Chad Z., Kabbash L. G. CR3 (CD11b/CD18) expresses one binding site for Arg-Gly-Asp-containing peptides and a second site for bacterial lipopolysaccharide. J Exp Med. 1989 Jan 1;169(1):175–183. doi: 10.1084/jem.169.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES