Abstract
An important step in the pathogenesis of Neisseria meningitidis is the crossing of two cellular barriers, one in the nasopharynx and one in the brain. To approach the mechanisms by which this bacterium can achieve these goals, we studied the interactions between N. meningitidis and a monolayer of polarized tight junction-forming T84 cells grown on filter units. A capsulated, piliated, Opa-, and Opc- N. meningitidis strain is shown to be capable of adhering to and crossing this monolayer several orders of magnitude more efficiently than an isogenic nonpiliated derivative. This bacterial interaction does not affect the barrier function of tight junctions, as assessed by (i) the absence of modification of the transepithelial resistance, (ii) the lack of increase of [3H]inulin penetration across the monolayer, and (iii) the absence of delocalization of ZO-1, a tight junction protein. Electron microscopy studies and confocal examinations demonstrated that N. meningitidis (i) induces cytoskeletal rearrangements with actin polymerization beneath adherent bacteria, (ii) is intimately attached to the apical membrane of the cells, and (iii) can be internalized inside cells. Immunofluorescent staining with antipilus antibodies showed evidence that meningococcal piliation was dramatically reduced at later time points of bacterial cell interaction compared to the early phase of this interaction. In addition, adhesive bacteria recovered from an infected monolayer are piliated, capsulated, Opa-, and Opc-, a phenotype similar to that of the parental strain. Taken together, these data demonstrate that following pilus-mediated adhesion, N. meningitidis is involved in an intimate attachment which requires a bacterial component different from Opa and Opc and that meningococci cross a monolayer of tight-junction-forming epithelial cells by using a transcellular pathway rather than a paracellular route.
Full Text
The Full Text of this article is available as a PDF (1,017.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Achtman M., Neibert M., Crowe B. A., Strittmatter W., Kusecek B., Weyse E., Walsh M. J., Slawig B., Morelli G., Moll A. Purification and characterization of eight class 5 outer membrane protein variants from a clone of Neisseria meningitidis serogroup A. J Exp Med. 1988 Aug 1;168(2):507–525. doi: 10.1084/jem.168.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson J. M., Balda M. S., Fanning A. S. The structure and regulation of tight junctions. Curr Opin Cell Biol. 1993 Oct;5(5):772–778. doi: 10.1016/0955-0674(93)90024-k. [DOI] [PubMed] [Google Scholar]
- Birkness K. A., Swisher B. L., White E. H., Long E. G., Ewing E. P., Jr, Quinn F. D. A tissue culture bilayer model to study the passage of Neisseria meningitidis. Infect Immun. 1995 Feb;63(2):402–409. doi: 10.1128/iai.63.2.402-409.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Canil C., Rosenshine I., Ruschkowski S., Donnenberg M. S., Kaper J. B., Finlay B. B. Enteropathogenic Escherichia coli decreases the transepithelial electrical resistance of polarized epithelial monolayers. Infect Immun. 1993 Jul;61(7):2755–2762. doi: 10.1128/iai.61.7.2755-2762.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Corthésy-Theulaz I., Porta N., Pringault E., Racine L., Bogdanova A., Kraehenbuhl J. P., Blum A. L., Michetti P. Adhesion of Helicobacter pylori to polarized T84 human intestinal cell monolayers is pH dependent. Infect Immun. 1996 Sep;64(9):3827–3832. doi: 10.1128/iai.64.9.3827-3832.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dermietzel R., Krause D. Molecular anatomy of the blood-brain barrier as defined by immunocytochemistry. Int Rev Cytol. 1991;127:57–109. doi: 10.1016/s0074-7696(08)60692-0. [DOI] [PubMed] [Google Scholar]
- Donnenberg M. S., Kaper J. B. Enteropathogenic Escherichia coli. Infect Immun. 1992 Oct;60(10):3953–3961. doi: 10.1128/iai.60.10.3953-3961.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forest K. T., Bernstein S. L., Getzoff E. D., So M., Tribbick G., Geysen H. M., Deal C. D., Tainer J. A. Assembly and antigenicity of the Neisseria gonorrhoeae pilus mapped with antibodies. Infect Immun. 1996 Feb;64(2):644–652. doi: 10.1128/iai.64.2.644-652.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furuse M., Fujimoto K., Sato N., Hirase T., Tsukita S., Tsukita S. Overexpression of occludin, a tight junction-associated integral membrane protein, induces the formation of intracellular multilamellar bodies bearing tight junction-like structures. J Cell Sci. 1996 Feb;109(Pt 2):429–435. doi: 10.1242/jcs.109.2.429. [DOI] [PubMed] [Google Scholar]
- Furuse M., Hirase T., Itoh M., Nagafuchi A., Yonemura S., Tsukita S., Tsukita S. Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol. 1993 Dec;123(6 Pt 2):1777–1788. doi: 10.1083/jcb.123.6.1777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jepson M. A., Collares-Buzato C. B., Clark M. A., Hirst B. H., Simmons N. L. Rapid disruption of epithelial barrier function by Salmonella typhimurium is associated with structural modification of intercellular junctions. Infect Immun. 1995 Jan;63(1):356–359. doi: 10.1128/iai.63.1.356-359.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KELLOGG D. S., Jr, PEACOCK W. L., Jr, DEACON W. E., BROWN L., PIRKLE D. I. NEISSERIA GONORRHOEAE. I. VIRULENCE GENETICALLY LINKED TO CLONAL VARIATION. J Bacteriol. 1963 Jun;85:1274–1279. doi: 10.1128/jb.85.6.1274-1279.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine S. Choroid plexus: target for systemic disease and pathway to the brain. Lab Invest. 1987 Mar;56(3):231–233. [PubMed] [Google Scholar]
- Madara J. L., Dharmsathaphorn K. Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol. 1985 Dec;101(6):2124–2133. doi: 10.1083/jcb.101.6.2124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marceau M., Beretti J. L., Nassif X. High adhesiveness of encapsulated Neisseria meningitidis to epithelial cells is associated with the formation of bundles of pili. Mol Microbiol. 1995 Sep;17(5):855–863. doi: 10.1111/j.1365-2958.1995.mmi_17050855.x. [DOI] [PubMed] [Google Scholar]
- Merz A. J., Rifenbery D. B., Arvidson C. G., So M. Traversal of a polarized epithelium by pathogenic Neisseriae: facilitation by type IV pili and maintenance of epithelial barrier function. Mol Med. 1996 Nov;2(6):745–754. [PMC free article] [PubMed] [Google Scholar]
- Nassif X., Beretti J. L., Lowy J., Stenberg P., O'Gaora P., Pfeifer J., Normark S., So M. Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3769–3773. doi: 10.1073/pnas.91.9.3769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nassif X., Lowy J., Stenberg P., O'Gaora P., Ganji A., So M. Antigenic variation of pilin regulates adhesion of Neisseria meningitidis to human epithelial cells. Mol Microbiol. 1993 May;8(4):719–725. doi: 10.1111/j.1365-2958.1993.tb01615.x. [DOI] [PubMed] [Google Scholar]
- Rubin L. L., Hall D. E., Porter S., Barbu K., Cannon C., Horner H. C., Janatpour M., Liaw C. W., Manning K., Morales J. A cell culture model of the blood-brain barrier. J Cell Biol. 1991 Dec;115(6):1725–1735. doi: 10.1083/jcb.115.6.1725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stephens D. S., Hoffman L. H., McGee Z. A. Interaction of Neisseria meningitidis with human nasopharyngeal mucosa: attachment and entry into columnar epithelial cells. J Infect Dis. 1983 Sep;148(3):369–376. doi: 10.1093/infdis/148.3.369. [DOI] [PubMed] [Google Scholar]
- Tuomanen E. Entry of pathogens into the central nervous system. FEMS Microbiol Rev. 1996 Jul;18(4):289–299. doi: 10.1111/j.1574-6976.1996.tb00245.x. [DOI] [PubMed] [Google Scholar]
- Virji M., Heckels J. E., Potts W. J., Hart C. A., Saunders J. R. Identification of epitopes recognized by monoclonal antibodies SM1 and SM2 which react with all pili of Neisseria gonorrhoeae but which differentiate between two structural classes of pili expressed by Neisseria meningitidis and the distribution of their encoding sequences in the genomes of Neisseria spp. J Gen Microbiol. 1989 Dec;135(12):3239–3251. doi: 10.1099/00221287-135-12-3239. [DOI] [PubMed] [Google Scholar]
- Virji M., Makepeace K., Ferguson D. J., Achtman M., Moxon E. R. Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Microbiol. 1993 Nov;10(3):499–510. doi: 10.1111/j.1365-2958.1993.tb00922.x. [DOI] [PubMed] [Google Scholar]
- Virji M., Makepeace K., Moxon E. R. Distinct mechanisms of interactions of Opc-expressing meningococci at apical and basolateral surfaces of human endothelial cells; the role of integrins in apical interactions. Mol Microbiol. 1994 Oct;14(1):173–184. doi: 10.1111/j.1365-2958.1994.tb01277.x. [DOI] [PubMed] [Google Scholar]
- Willott E., Balda M. S., Fanning A. S., Jameson B., Van Itallie C., Anderson J. M. The tight junction protein ZO-1 is homologous to the Drosophila discs-large tumor suppressor protein of septate junctions. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7834–7838. doi: 10.1073/pnas.90.16.7834. [DOI] [PMC free article] [PubMed] [Google Scholar]