Abstract
Objective: To quantify the direct and indirect effects of fetal (position in family, weight, and social class at birth), childhood (breast feeding, growth, infections, and social class in childhood, age at menarche), and adult life (social class, alcohol consumption, smoking, diet, reproductive history, exercise, hormone replacement therapy use), and adult size (height, weight) on bone health at age 49–51 years, as measured by bone mineral density, total scanned bone area of the hip and lumbar spine, and femoral neck shaft angle.
Design: Follow up study of the Newcastle thousand families birth cohort established in 1947.
Participants: 171 men and 218 women who attended for dual energy x ray absorptiometry scanning.
Main results: Fetal life explained around 6% of variation in adult bone mineral density for men, but accounted for less than 1% for women. Adult lifestyle, including effects mediated through adult weight accounted for over 10% of variation in density for men and around 6% for women. Almost half of variation in bone area for men was explained by early life. However, most of this was mediated through achieved adult height and weight. In women, less than 5% of variation in bone area was accounted for by early life, after adjusting for adult size. Most of the variation in each of the indicators for both sexes was contributed either directly or indirectly by adult lifestyle and achieved adult height and weight.
Conclusions: The effect of fetal life on bone health in adulthood seems to be mediated through achieved adult height.
Full Text
The Full Text of this article is available as a PDF (85.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen L. F., Nes M., Lillegaard I. T., Sandstad B., Bjørneboe G. E., Drevon C. A. Evaluation of a quantitative food frequency questionnaire used in a group of Norwegian adolescents. Eur J Clin Nutr. 1995 Aug;49(8):543–554. [PubMed] [Google Scholar]
- Antoniades L., MacGregor A. J., Andrew T., Spector T. D. Association of birth weight with osteoporosis and osteoarthritis in adult twins. Rheumatology (Oxford) 2003 Apr 30;42(6):791–796. doi: 10.1093/rheumatology/keg227. [DOI] [PubMed] [Google Scholar]
- Baker D., Klein R. Explaining outputs of primary health care: population and practice factors. BMJ. 1991 Jul 27;303(6796):225–229. doi: 10.1136/bmj.303.6796.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barker D. J. P. The developmental origins of adult disease. Eur J Epidemiol. 2003;18(8):733–736. doi: 10.1023/a:1025388901248. [DOI] [PubMed] [Google Scholar]
- Bingham S. A., Gill C., Welch A., Cassidy A., Runswick S. A., Oakes S., Lubin R., Thurnham D. I., Key T. J., Roe L. Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24-hour urinary nitrogen and potassium and serum vitamin C and carotenoids as biomarkers. Int J Epidemiol. 1997;26 (Suppl 1):S137–S151. doi: 10.1093/ije/26.suppl_1.s137. [DOI] [PubMed] [Google Scholar]
- Cooper C., Cawley M., Bhalla A., Egger P., Ring F., Morton L., Barker D. Childhood growth, physical activity, and peak bone mass in women. J Bone Miner Res. 1995 Jun;10(6):940–947. doi: 10.1002/jbmr.5650100615. [DOI] [PubMed] [Google Scholar]
- Cooper C., Eriksson J. G., Forsén T., Osmond C., Tuomilehto J., Barker D. J. Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int. 2001;12(8):623–629. doi: 10.1007/s001980170061. [DOI] [PubMed] [Google Scholar]
- Cooper C., Fall C., Egger P., Hobbs R., Eastell R., Barker D. Growth in infancy and bone mass in later life. Ann Rheum Dis. 1997 Jan;56(1):17–21. doi: 10.1136/ard.56.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper C., Walker-Bone K., Arden N., Dennison E. Novel insights into the pathogenesis of osteoporosis: the role of intrauterine programming. Rheumatology (Oxford) 2000 Dec;39(12):1312–1315. doi: 10.1093/rheumatology/39.12.1312. [DOI] [PubMed] [Google Scholar]
- Düppe H., Cooper C., Gärdsell P., Johnell O. The relationship between childhood growth, bone mass, and muscle strength in male and female adolescents. Calcif Tissue Int. 1997 May;60(5):405–409. doi: 10.1007/s002239900253. [DOI] [PubMed] [Google Scholar]
- Faulkner K. G., Cummings S. R., Black D., Palermo L., Glüer C. C., Genant H. K. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res. 1993 Oct;8(10):1211–1217. doi: 10.1002/jbmr.5650081008. [DOI] [PubMed] [Google Scholar]
- Freeman J. V., Cole T. J., Chinn S., Jones P. R., White E. M., Preece M. A. Cross sectional stature and weight reference curves for the UK, 1990. Arch Dis Child. 1995 Jul;73(1):17–24. doi: 10.1136/adc.73.1.17. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gale C. R., Martyn C. N., Kellingray S., Eastell R., Cooper C. Intrauterine programming of adult body composition. J Clin Endocrinol Metab. 2001 Jan;86(1):267–272. doi: 10.1210/jcem.86.1.7155. [DOI] [PubMed] [Google Scholar]
- Gnudi S., Ripamonti C., Lisi L., Fini M., Giardino R., Giavaresi G. Proximal femur geometry to detect and distinguish femoral neck fractures from trochanteric fractures in postmenopausal women. Osteoporos Int. 2002 Jan;13(1):69–73. doi: 10.1007/s198-002-8340-2. [DOI] [PubMed] [Google Scholar]
- Hall S. L., Greendale G. A. The relation of dietary vitamin C intake to bone mineral density: results from the PEPI study. Calcif Tissue Int. 1998 Sep;63(3):183–189. doi: 10.1007/s002239900512. [DOI] [PubMed] [Google Scholar]
- Ilich J. Z., Brownbill R. A., Tamborini L. Bone and nutrition in elderly women: protein, energy, and calcium as main determinants of bone mineral density. Eur J Clin Nutr. 2003 Apr;57(4):554–565. doi: 10.1038/sj.ejcn.1601577. [DOI] [PubMed] [Google Scholar]
- Kaptoge S., Welch A., McTaggart A., Mulligan A., Dalzell N., Day N. E., Bingham S., Khaw K-T, Reeve J. Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age. Osteoporos Int. 2003 Apr 16;14(5):418–428. doi: 10.1007/s00198-003-1391-6. [DOI] [PubMed] [Google Scholar]
- Kuh D. J., Cooper C. Physical activity at 36 years: patterns and childhood predictors in a longitudinal study. J Epidemiol Community Health. 1992 Apr;46(2):114–119. doi: 10.1136/jech.46.2.114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuh D., Ben-Shlomo Y., Lynch J., Hallqvist J., Power C. Life course epidemiology. J Epidemiol Community Health. 2003 Oct;57(10):778–783. doi: 10.1136/jech.57.10.778. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lamont D. W., Parker L., Cohen M. A., White M., Bennett S. M., Unwin N. C., Craft A. W., Alberti K. G. Early life and later determinants of adult disease: a 50 year follow-up study of the Newcastle Thousand Families cohort. Public Health. 1998 Mar;112(2):85–93. [PubMed] [Google Scholar]
- Lamont D., Parker L., White M., Unwin N., Bennett S. M., Cohen M., Richardson D., Dickinson H. O., Adamson A., Alberti K. G. Risk of cardiovascular disease measured by carotid intima-media thickness at age 49-51: lifecourse study. BMJ. 2000 Jan 29;320(7230):273–278. doi: 10.1136/bmj.320.7230.273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maggio Dario, Barabani Mauro, Pierandrei Marco, Polidori M. Cristina, Catani Marco, Mecocci Patrizia, Senin Umberto, Pacifici Roberto, Cherubini Antonio. Marked decrease in plasma antioxidants in aged osteoporotic women: results of a cross-sectional study. J Clin Endocrinol Metab. 2003 Apr;88(4):1523–1527. doi: 10.1210/jc.2002-021496. [DOI] [PubMed] [Google Scholar]
- Martyn C. N., Hales C. N., Barker D. J., Jespersen S. Fetal growth and hyperinsulinaemia in adult life. Diabet Med. 1998 Aug;15(8):688–694. doi: 10.1002/(SICI)1096-9136(199808)15:8<688::AID-DIA649>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
- Must A., Phillips S. M., Naumova E. N., Blum M., Harris S., Dawson-Hughes B., Rand W. M. Recall of early menstrual history and menarcheal body size: after 30 years, how well do women remember? Am J Epidemiol. 2002 Apr 1;155(7):672–679. doi: 10.1093/aje/155.7.672. [DOI] [PubMed] [Google Scholar]
- Oreffo Richard O. C., Lashbrooke Benjamin, Roach Helmtrud I., Clarke Nicholas M. P., Cooper Cyrus. Maternal protein deficiency affects mesenchymal stem cell activity in the developing offspring. Bone. 2003 Jul;33(1):100–107. doi: 10.1016/s8756-3282(03)00166-2. [DOI] [PubMed] [Google Scholar]
- Parker L., Lamont D. W., Unwin N., Pearce M. S., Bennett S. M. A., Dickinson H. O., White M., Mathers J. C., Alberti K. G. M. M., Craft A. W. A lifecourse study of risk for hyperinsulinaemia, dyslipidaemia and obesity (the central metabolic syndrome) at age 49-51 years. Diabet Med. 2003 May;20(5):406–415. doi: 10.1046/j.1464-5491.2003.00949.x. [DOI] [PubMed] [Google Scholar]
- Pietinen P., Hartman A. M., Haapa E., Räsänen L., Haapakoski J., Palmgren J., Albanes D., Virtamo J., Huttunen J. K. Reproducibility and validity of dietary assessment instruments. I. A self-administered food use questionnaire with a portion size picture booklet. Am J Epidemiol. 1988 Sep;128(3):655–666. doi: 10.1093/oxfordjournals.aje.a115013. [DOI] [PubMed] [Google Scholar]
- Power C., Rodgers B., Hope S. U-shaped relation for alcohol consumption and health in early adulthood and implications for mortality. Lancet. 1998 Sep 12;352(9131):877–877. doi: 10.1016/S0140-6736(98)23937-7. [DOI] [PubMed] [Google Scholar]
- Qureshi A. M., McGuigan F. E., Seymour D. G., Hutchison J. D., Reid D. M., Ralston S. H. Association between COLIA1 Sp1 alleles and femoral neck geometry. Calcif Tissue Int. 2001 Aug;69(2):67–72. doi: 10.1007/s002230010037. [DOI] [PubMed] [Google Scholar]
- Royston P., Ambler G., Sauerbrei W. The use of fractional polynomials to model continuous risk variables in epidemiology. Int J Epidemiol. 1999 Oct;28(5):964–974. doi: 10.1093/ije/28.5.964. [DOI] [PubMed] [Google Scholar]
- Scane A. C., Francis R. M. Risk factors for osteoporosis in men. Clin Endocrinol (Oxf) 1993 Jan;38(1):15–16. doi: 10.1111/j.1365-2265.1993.tb00965.x. [DOI] [PubMed] [Google Scholar]
- Victora C. G., Huttly S. R., Fuchs S. C., Olinto M. T. The role of conceptual frameworks in epidemiological analysis: a hierarchical approach. Int J Epidemiol. 1997 Feb;26(1):224–227. doi: 10.1093/ije/26.1.224. [DOI] [PubMed] [Google Scholar]
- Williams F. M. K., Cherkas L. F., Spector T. D., MacGregor A. J. The effect of moderate alcohol consumption on bone mineral density: a study of female twins. Ann Rheum Dis. 2004 Jul 1;64(2):309–310. doi: 10.1136/ard.2004.022269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yarbrough D. E., Barrett-Connor E., Morton D. J. Birth weight as a predictor of adult bone mass in postmenopausal women: the Rancho Bernardo Study. Osteoporos Int. 2000;11(7):626–630. doi: 10.1007/s001980070085. [DOI] [PubMed] [Google Scholar]