Skip to main content
Journal of Epidemiology and Community Health logoLink to Journal of Epidemiology and Community Health
. 2005 Jun;59(6):517–526. doi: 10.1136/jech.2004.025478

Comparison of a spatial approach with the multilevel approach for investigating place effects on health: the example of healthcare utilisation in France

B Chaix 1, J Merlo 1, P Chauvin 1
PMCID: PMC1757051  PMID: 15911650

Abstract

Study objective: Most studies of place effects on health have followed the multilevel analytical approach that investigates geographical variations of health phenomena by fragmenting space into arbitrary areas. This study examined whether analysing geographical variations across continuous space with spatial modelling techniques and contextual indicators that capture space as a continuous dimension surrounding individual residences provided more relevant information on the spatial distribution of outcomes. Healthcare utilisation in France was taken as an illustrative example in comparing the spatial approach with the multilevel approach.

Design: Multilevel and spatial analyses of cross sectional data.

Participants: 10 955 beneficiaries of the three principal national health insurance funds, surveyed in 1998 and 2000 on continental France.

Main results: Multilevel models showed significant geographical variations in healthcare utilisation. However, the Moran's I statistic showed spatial autocorrelation unaccounted for by multilevel models. Modelling the correlation between people as a decreasing function of the spatial distance between them, spatial mixed models gave information not only on the magnitude, but also on the scale of spatial variations, and provided more accurate standard errors for risk factors effects. The socioeconomic level of the residential context and the supply of physicians were independently associated with healthcare utilisation. Place indicators better explained spatial variations in healthcare utilisation when measured across continuous space, rather than within administrative areas.

Conclusions: The kind of conceptualisation of space during analysis influences the understanding of place effects on health. In many contextual studies, viewing space as a continuum may yield more relevant information on the spatial distribution of outcomes.

Full Text

The Full Text of this article is available as a PDF (495.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali M., Emch M., Tofail F., Baqui A. H. Implications of health care provision on acute lower respiratory infection mortality in Bangladeshi children. Soc Sci Med. 2001 Jan;52(2):267–277. doi: 10.1016/s0277-9536(00)00120-9. [DOI] [PubMed] [Google Scholar]
  2. Baker D. W., Hayes R. P., Massie B. M., Craig C. A. Variations in family physicians' and cardiologists' care for patients with heart failure. Am Heart J. 1999 Nov;138(5 Pt 1):826–834. doi: 10.1016/s0002-8703(99)70006-2. [DOI] [PubMed] [Google Scholar]
  3. Banerjee Sudipto, Wall Melanie M., Carlin Bradley P. Frailty modeling for spatially correlated survival data, with application to infant mortality in Minnesota. Biostatistics. 2003 Jan;4(1):123–142. doi: 10.1093/biostatistics/4.1.123. [DOI] [PubMed] [Google Scholar]
  4. Bobashev G. V., Anthony J. C. Clusters of marijuana use in the United States. Am J Epidemiol. 1998 Dec 15;148(12):1168–1174. doi: 10.1093/oxfordjournals.aje.a009605. [DOI] [PubMed] [Google Scholar]
  5. Bodenheimer T., Lo B., Casalino L. Primary care physicians should be coordinators, not gatekeepers. JAMA. 1999 Jun 2;281(21):2045–2049. doi: 10.1001/jama.281.21.2045. [DOI] [PubMed] [Google Scholar]
  6. Burnett R., Ma R., Jerrett M., Goldberg M. S., Cakmak S., Pope C. A., 3rd, Krewski D. The spatial association between community air pollution and mortality: a new method of analyzing correlated geographic cohort data. Environ Health Perspect. 2001 Jun;109 (Suppl 3):375–380. doi: 10.1289/ehp.01109s3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cakmak Sabit, Burnett Richard T., Jerrett Michael, Goldberg Mark S., Pope C. Arden, 3rd, Ma Renjun, Gultekin Timur, Thun Michael, Krewski Daniel. Spatial regression models for large-cohort studies linking community air pollution and health. 2003 Aug 22-Oct 10J Toxicol Environ Health A. 66(16-19):1811–1823. doi: 10.1080/15287390306444. [DOI] [PubMed] [Google Scholar]
  8. Carrat F., Valleron A. J. Epidemiologic mapping using the "kriging" method: application to an influenza-like illness epidemic in France. Am J Epidemiol. 1992 Jun 1;135(11):1293–1300. doi: 10.1093/oxfordjournals.aje.a116236. [DOI] [PubMed] [Google Scholar]
  9. Chaix B., Boëlle P-Y, Guilbert P., Chauvin P. Area-level determinants of specialty care utilization in France: a multilevel analysis. Public Health. 2005 Feb;119(2):97–104. doi: 10.1016/j.puhe.2004.05.006. [DOI] [PubMed] [Google Scholar]
  10. Diez-Roux A. V. Bringing context back into epidemiology: variables and fallacies in multilevel analysis. Am J Public Health. 1998 Feb;88(2):216–222. doi: 10.2105/ajph.88.2.216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Diez-Roux A. V. Multilevel analysis in public health research. Annu Rev Public Health. 2000;21:171–192. doi: 10.1146/annurev.publhealth.21.1.171. [DOI] [PubMed] [Google Scholar]
  12. English Paul B., Kharrazi Martin, Davies Stephanie, Scalf Rusty, Waller Lance, Neutra Raymond. Changes in the spatial pattern of low birth weight in a southern California county: the role of individual and neighborhood level factors. Soc Sci Med. 2003 May;56(10):2073–2088. doi: 10.1016/s0277-9536(02)00202-2. [DOI] [PubMed] [Google Scholar]
  13. Gemperli A., Vounatsou P., Kleinschmidt I., Bagayoko M., Lengeler C., Smith T. Spatial patterns of infant mortality in Mali: the effect of malaria endemicity. Am J Epidemiol. 2004 Jan 1;159(1):64–72. doi: 10.1093/aje/kwh001. [DOI] [PubMed] [Google Scholar]
  14. Goldstein Harvey, Browne William, Rasbash Jon. Multilevel modelling of medical data. Stat Med. 2002 Nov 15;21(21):3291–3315. doi: 10.1002/sim.1264. [DOI] [PubMed] [Google Scholar]
  15. Green Chris, Hoppa Robert D., Young T. Kue, Blanchard J. F. Geographic analysis of diabetes prevalence in an urban area. Soc Sci Med. 2003 Aug;57(3):551–560. doi: 10.1016/s0277-9536(02)00380-5. [DOI] [PubMed] [Google Scholar]
  16. Grumbach K., Selby J. V., Damberg C., Bindman A. B., Quesenberry C., Jr, Truman A., Uratsu C. Resolving the gatekeeper conundrum: what patients value in primary care and referrals to specialists. JAMA. 1999 Jul 21;282(3):261–266. doi: 10.1001/jama.282.3.261. [DOI] [PubMed] [Google Scholar]
  17. Joines Jerry D., Hertz-Picciotto Irva, Carey Timothy S., Gesler Wilbert, Suchindran Chirayath. A spatial analysis of county-level variation in hospitalization rates for low back problems in North Carolina. Soc Sci Med. 2003 Jun;56(12):2541–2553. doi: 10.1016/s0277-9536(02)00295-2. [DOI] [PubMed] [Google Scholar]
  18. Kleinschmidt I., Sharp B. L., Clarke G. P., Curtis B., Fraser C. Use of generalized linear mixed models in the spatial analysis of small-area malaria incidence rates in Kwazulu Natal, South Africa. Am J Epidemiol. 2001 Jun 15;153(12):1213–1221. doi: 10.1093/aje/153.12.1213. [DOI] [PubMed] [Google Scholar]
  19. Kleinschmidt Immo, Sharp Brian, Mueller Ivo, Vounatsou Penelope. Rise in malaria incidence rates in South Africa: a small-area spatial analysis of variation in time trends. Am J Epidemiol. 2002 Feb 1;155(3):257–264. doi: 10.1093/aje/155.3.257. [DOI] [PubMed] [Google Scholar]
  20. Langford I. H., Leyland A. H., Rasbash J., Goldstein H. Multilevel modelling of the geographical distributions of diseases. J R Stat Soc Ser C Appl Stat. 1999;48(2):253–268. doi: 10.1111/1467-9876.00153. [DOI] [PubMed] [Google Scholar]
  21. Leyland A. H., Langford I. H., Rasbash J., Goldstein H. Multivariate spatial models for event data. Stat Med. 2000 Sep 15;19(17-18):2469–2478. doi: 10.1002/1097-0258(20000915/30)19:17/18<2469::aid-sim582>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  22. Liu Gilbert C., Cunningham Cynthia, Downs Stephen M., Marrero David G., Fineberg Naomi. A spatial analysis of obesogenic environments for children. Proc AMIA Symp. 2002:459–463. [PMC free article] [PubMed] [Google Scholar]
  23. Merlo J., Ostergren P. O., Hagberg O., Lindström M., Lindgren A., Melander A., Råstam L., Berglund G. Diastolic blood pressure and area of residence: multilevel versus ecological analysis of social inequity. J Epidemiol Community Health. 2001 Nov;55(11):791–798. doi: 10.1136/jech.55.11.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Merlo Juan, Asplund Kjell, Lynch John, Råstam Lennart, Dobson Annette, World Health Organization MONICA Project Population effects on individual systolic blood pressure: a multilevel analysis of the World Health Organization MONICA Project. Am J Epidemiol. 2004 Jun 15;159(12):1168–1179. doi: 10.1093/aje/kwh160. [DOI] [PubMed] [Google Scholar]
  25. Merlo Juan, Chaix Basile, Yang Min, Lynch John, Råstam Lennart. A brief conceptual tutorial of multilevel analysis in social epidemiology: linking the statistical concept of clustering to the idea of contextual phenomenon. J Epidemiol Community Health. 2005 Jun;59(6):443–449. doi: 10.1136/jech.2004.023473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morenoff Jeffrey D. Neighborhood mechanisms and the spatial dynamics of birth weight. AJS. 2003 Mar;108(5):976–1017. doi: 10.1086/374405. [DOI] [PubMed] [Google Scholar]
  27. Pickett K. E., Pearl M. Multilevel analyses of neighbourhood socioeconomic context and health outcomes: a critical review. J Epidemiol Community Health. 2001 Feb;55(2):111–122. doi: 10.1136/jech.55.2.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Preisser John S., Arcury Thomas A., Quandt Sara A. Detecting patterns of occupational illness clustering with alternating logistic regressions applied to longitudinal data. Am J Epidemiol. 2003 Sep 1;158(5):495–501. doi: 10.1093/aje/kwg169. [DOI] [PubMed] [Google Scholar]
  29. Richardson Sylvia, Thomson Andrew, Best Nicky, Elliott Paul. Interpreting posterior relative risk estimates in disease-mapping studies. Environ Health Perspect. 2004 Jun;112(9):1016–1025. doi: 10.1289/ehp.6740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rushton Gerard, Peleg Ika, Banerjee Aniruddha, Smith Geoffrey, West Michele. Analyzing geographic patterns of disease incidence: rates of late-stage colorectal cancer in Iowa. J Med Syst. 2004 Jun;28(3):223–236. doi: 10.1023/b:joms.0000032841.39701.36. [DOI] [PubMed] [Google Scholar]
  31. Rushton Gerard. Public health, GIS, and spatial analytic tools. Annu Rev Public Health. 2002 Oct 23;24:43–56. doi: 10.1146/annurev.publhealth.24.012902.140843. [DOI] [PubMed] [Google Scholar]
  32. Sabel C. E., Boyle P. J., Löytönen M., Gatrell A. C., Jokelainen M., Flowerdew R., Maasilta P. Spatial clustering of amyotrophic lateral sclerosis in Finland at place of birth and place of death. Am J Epidemiol. 2003 May 15;157(10):898–905. doi: 10.1093/aje/kwg090. [DOI] [PubMed] [Google Scholar]
  33. Soloway B. Primary care and specialty care in the age of HAART. AIDS Clin Care. 1997 May;9(5):37–39. [PubMed] [Google Scholar]
  34. Treno A. J., Gruenewald P. J., Johnson F. W. Alcohol availability and injury: the role of local outlet densities. Alcohol Clin Exp Res. 2001 Oct;25(10):1467–1471. doi: 10.1097/00000374-200110000-00009. [DOI] [PubMed] [Google Scholar]
  35. Walter S. D. The analysis of regional patterns in health data. II. The power to detect environmental effects. Am J Epidemiol. 1992 Sep 15;136(6):742–759. doi: 10.1093/oxfordjournals.aje.a116553. [DOI] [PubMed] [Google Scholar]
  36. Werneck Guilherme L., Maguire James H. Spatial modeling using mixed models: an ecologic study of visceral leishmaniasis in Teresina, Piauí State, Brazil. Cad Saude Publica. 2002 May-Jun;18(3):633–637. doi: 10.1590/s0102-311x2002000300007. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Epidemiology and Community Health are provided here courtesy of BMJ Publishing Group

RESOURCES