Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Dec;65(12):4897–4903. doi: 10.1128/iai.65.12.4897-4903.1997

Interleukin-12 is critical for induction of nitric oxide-mediated immunosuppression following vaccination of mice with attenuated Salmonella typhimurium.

M G Schwacha 1, T K Eisenstein 1
PMCID: PMC175706  PMID: 9393773

Abstract

Studies from our laboratory have shown that infection of mice with an attenuated strain of Salmonella typhimurium causes a marked suppression in the capacity of splenocytes to generate an in vitro plaque-forming cell (PFC) response to sheep erythrocytes. The suppression has been shown to be mediated by mature, adherent macrophages (Mphis) and nonadherent, precursor Mphis. Nitric oxide has been identified as the suppressor factor. The present study investigated the role of interleukin-12 (IL-12) in the generation of nitric oxide-mediated immunosuppression in this model. Salmonella inoculation resulted in marked suppression of PFC responses and high levels of nitrite production. When mice were treated with anti-IL-12 prior to inoculation, nitrite levels in splenocyte cultures were reduced by 75% and the suppression of PFC responses was prevented. The nonadherent splenocyte fraction from Salmonella-inoculated mice, which contains precursor Mphis and is weakly immunosuppressive, was treated with IL-12 in vitro. IL-12 augmented the capacity of this fraction to suppress PFC responses by normal splenocytes in a coculture system. Additionally, IL-12 induced nitrite and gamma interferon (IFN-gamma) production in a dose-dependent manner. Treatment with anti-IFN-gamma blocked nitrite production and suppression, indicating that IFN-gamma is an important intermediary in the pathway of IL-12-induced immunosuppression. These results indicate that IL-12 is critical for the induction of nitric oxide-mediated immunosuppression following S. typhimurium inoculation and, through its ability to stimulate IFN-gamma production, can induce nitric oxide-producing suppressor Mphis.

Full Text

The Full Text of this article is available as a PDF (197.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Afonso L. C., Scharton T. M., Vieira L. Q., Wysocka M., Trinchieri G., Scott P. The adjuvant effect of interleukin-12 in a vaccine against Leishmania major. Science. 1994 Jan 14;263(5144):235–237. doi: 10.1126/science.7904381. [DOI] [PubMed] [Google Scholar]
  2. Aida Y., Pabst M. J. Removal of endotoxin from protein solutions by phase separation using Triton X-114. J Immunol Methods. 1990 Sep 14;132(2):191–195. doi: 10.1016/0022-1759(90)90029-u. [DOI] [PubMed] [Google Scholar]
  3. Albina J. E., Abate J. A., Henry W. L., Jr Nitric oxide production is required for murine resident peritoneal macrophages to suppress mitogen-stimulated T cell proliferation. Role of IFN-gamma in the induction of the nitric oxide-synthesizing pathway. J Immunol. 1991 Jul 1;147(1):144–148. [PubMed] [Google Scholar]
  4. Boockvar K. S., Granger D. L., Poston R. M., Maybodi M., Washington M. K., Hibbs J. B., Jr, Kurlander R. L. Nitric oxide produced during murine listeriosis is protective. Infect Immun. 1994 Mar;62(3):1089–1100. doi: 10.1128/iai.62.3.1089-1100.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brunda M. J. Interleukin-12. J Leukoc Biol. 1994 Feb;55(2):280–288. doi: 10.1002/jlb.55.2.280. [DOI] [PubMed] [Google Scholar]
  6. Candolfi E., Hunter C. A., Remington J. S. Mitogen- and antigen-specific proliferation of T cells in murine toxoplasmosis is inhibited by reactive nitrogen intermediates. Infect Immun. 1994 May;62(5):1995–2001. doi: 10.1128/iai.62.5.1995-2001.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Car B. D., Eng V. M., Schnyder B., LeHir M., Shakhov A. N., Woerly G., Huang S., Aguet M., Anderson T. D., Ryffel B. Role of interferon-gamma in interleukin 12-induced pathology in mice. Am J Pathol. 1995 Dec;147(6):1693–1707. [PMC free article] [PubMed] [Google Scholar]
  8. Chan S. H., Perussia B., Gupta J. W., Kobayashi M., Pospísil M., Young H. A., Wolf S. F., Young D., Clark S. C., Trinchieri G. Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med. 1991 Apr 1;173(4):869–879. doi: 10.1084/jem.173.4.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chong C., Bost K. L., Clements J. D. Differential production of interleukin-12 mRNA by murine macrophages in response to viable or killed Salmonella spp. Infect Immun. 1996 Apr;64(4):1154–1160. doi: 10.1128/iai.64.4.1154-1160.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cunningham A. J., Szenberg A. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology. 1968 Apr;14(4):599–600. [PMC free article] [PubMed] [Google Scholar]
  11. Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
  12. Eisenstein T. K., Bushnell B., Meissler J. J., Jr, Dalal N., Schafer R., Havas H. F. Immunotherapy of a plasmacytoma with attenuated salmonella. Med Oncol. 1995 Jun;12(2):103–108. doi: 10.1007/BF01676710. [DOI] [PubMed] [Google Scholar]
  13. Eisenstein T. K., Dalal N., Killar L., Lee J. C., Schafer R. Paradoxes of immunity and immunosuppression in Salmonella infection. Adv Exp Med Biol. 1988;239:353–366. doi: 10.1007/978-1-4757-5421-6_34. [DOI] [PubMed] [Google Scholar]
  14. Eisenstein T. K., Huang D., Meissler J. J., Jr, al-Ramadi B. Macrophage nitric oxide mediates immunosuppression in infectious inflammation. Immunobiology. 1994 Oct;191(4-5):493–502. doi: 10.1016/S0171-2985(11)80455-9. [DOI] [PubMed] [Google Scholar]
  15. Eisenstein T. K., Killar L. M., Stocker B. A., Sultzer B. M. Cellular immunity induced by avirulent Salmonella in LPS-defective C3H/HeJ mice. J Immunol. 1984 Aug;133(2):958–961. [PubMed] [Google Scholar]
  16. Eisenstein T. K. Suppressor macrophages. Immunol Ser. 1994;60:203–224. [PubMed] [Google Scholar]
  17. Flesch I. E., Hess J. H., Huang S., Aguet M., Rothe J., Bluethmann H., Kaufmann S. H. Early interleukin 12 production by macrophages in response to mycobacterial infection depends on interferon gamma and tumor necrosis factor alpha. J Exp Med. 1995 May 1;181(5):1615–1621. doi: 10.1084/jem.181.5.1615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Flynn J. L., Goldstein M. M., Triebold K. J., Sypek J., Wolf S., Bloom B. R. IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. J Immunol. 1995 Sep 1;155(5):2515–2524. [PubMed] [Google Scholar]
  19. Fujiwara H., Zou J. P., Herrmann S., Hamaoka T. A sequence of cellular and molecular events involved in IL12-induced tumour regression. Res Immunol. 1995 Sep-Oct;146(7-8):638–644. doi: 10.1016/0923-2494(96)83042-2. [DOI] [PubMed] [Google Scholar]
  20. Germann T., Szeliga J., Hess H., Störkel S., Podlaski F. J., Gately M. K., Schmitt E., Rüde E. Administration of interleukin 12 in combination with type II collagen induces severe arthritis in DBA/1 mice. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4823–4827. doi: 10.1073/pnas.92.11.4823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hall S. S. IL-12 at the crossroads. Science. 1995 Jun 9;268(5216):1432–1434. doi: 10.1126/science.7770767. [DOI] [PubMed] [Google Scholar]
  22. Heinzel F. P., Rerko R. M., Ahmed F., Hujer A. M. IFN-gamma-independent production of IL-12 during murine endotoxemia. J Immunol. 1996 Nov 15;157(10):4521–4528. [PubMed] [Google Scholar]
  23. Heinzel F. P., Rerko R. M., Ling P., Hakimi J., Schoenhaut D. S. Interleukin 12 is produced in vivo during endotoxemia and stimulates synthesis of gamma interferon. Infect Immun. 1994 Oct;62(10):4244–4249. doi: 10.1128/iai.62.10.4244-4249.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
  25. Hoiseth S. K., Stocker B. A. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature. 1981 May 21;291(5812):238–239. doi: 10.1038/291238a0. [DOI] [PubMed] [Google Scholar]
  26. Hormaeche C. E., Harrington K. A., Joysey H. S. Natural resistance to salmonellae in mice: control by genes within the major histocompatibility complex. J Infect Dis. 1985 Nov;152(5):1050–1056. doi: 10.1093/infdis/152.5.1050. [DOI] [PubMed] [Google Scholar]
  27. Huang D., Schwacha M. G., Eisenstein T. K. Attenuated Salmonella vaccine-induced suppression of murine spleen cell responses to mitogen is mediated by macrophage nitric oxide: quantitative aspects. Infect Immun. 1996 Sep;64(9):3786–3792. doi: 10.1128/iai.64.9.3786-3792.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Huang F. P., Feng G. J., Lindop G., Stott D. I., Liew F. Y. The role of interleukin 12 and nitric oxide in the development of spontaneous autoimmune disease in MRL/MP-lpr/lpr mice. J Exp Med. 1996 Apr 1;183(4):1447–1459. doi: 10.1084/jem.183.4.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hunter C. A., Candolfi E., Subauste C., Van Cleave V., Remington J. S. Studies on the role of interleukin-12 in acute murine toxoplasmosis. Immunology. 1995 Jan;84(1):16–20. [PMC free article] [PubMed] [Google Scholar]
  30. Hunter C. A., Chizzonite R., Remington J. S. IL-1 beta is required for IL-12 to induce production of IFN-gamma by NK cells. A role for IL-1 beta in the T cell-independent mechanism of resistance against intracellular pathogens. J Immunol. 1995 Nov 1;155(9):4347–4354. [PubMed] [Google Scholar]
  31. Kilbourn R., Lopez-Berestein G. Protease inhibitors block the macrophage-mediated inhibition of tumor cell mitochondrial respiration. J Immunol. 1990 Feb 1;144(3):1042–1045. [PubMed] [Google Scholar]
  32. Killar L. M., Eisenstein T. K. Delayed-type hypersensitivity and immunity to Salmonella typhimurium. Infect Immun. 1986 May;52(2):504–508. doi: 10.1128/iai.52.2.504-508.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Killar L. M., Eisenstein T. K. Differences in delayed-type hypersensitivity responses in various mouse strains in the C3H lineage infected with Salmonella typhimurium, strain SL3235. J Immunol. 1984 Sep;133(3):1190–1196. [PubMed] [Google Scholar]
  34. Killar L. M., Eisenstein T. K. Immunity to Salmonella typhimurium infection in C3H/HeJ and C3H/HeNCrlBR mice: studies with an aromatic-dependent live S. typhimurium strain as a vaccine. Infect Immun. 1985 Mar;47(3):605–612. doi: 10.1128/iai.47.3.605-612.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Kincy-Cain T., Clements J. D., Bost K. L. Endogenous and exogenous interleukin-12 augment the protective immune response in mice orally challenged with Salmonella dublin. Infect Immun. 1996 Apr;64(4):1437–1440. doi: 10.1128/iai.64.4.1437-1440.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Kobayashi M., Fitz L., Ryan M., Hewick R. M., Clark S. C., Chan S., Loudon R., Sherman F., Perussia B., Trinchieri G. Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med. 1989 Sep 1;170(3):827–845. doi: 10.1084/jem.170.3.827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Kwon N. S., Stuehr D. J., Nathan C. F. Inhibition of tumor cell ribonucleotide reductase by macrophage-derived nitric oxide. J Exp Med. 1991 Oct 1;174(4):761–767. doi: 10.1084/jem.174.4.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Lee J. C., Gibson C. W., Eisenstein T. K. Macrophage-mediated mitogenic suppression induced in mice of the C3H lineage by a vaccine strain of Salmonella typhimurium. Cell Immunol. 1985 Mar;91(1):75–91. doi: 10.1016/0008-8749(85)90033-4. [DOI] [PubMed] [Google Scholar]
  39. Leonard J. P., Waldburger K. E., Goldman S. J. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med. 1995 Jan 1;181(1):381–386. doi: 10.1084/jem.181.1.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Lepoivre M., Flaman J. M., Bobé P., Lemaire G., Henry Y. Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide. Relationship to cytostasis induced in tumor cells by cytotoxic macrophages. J Biol Chem. 1994 Aug 26;269(34):21891–21897. [PubMed] [Google Scholar]
  41. Locksley R. M. Interleukin 12 in host defense against microbial pathogens. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):5879–5880. doi: 10.1073/pnas.90.13.5879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Lorsbach R. B., Murphy W. J., Lowenstein C. J., Snyder S. H., Russell S. W. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J Biol Chem. 1993 Jan 25;268(3):1908–1913. [PubMed] [Google Scholar]
  43. MacMicking J., Xie Q. W., Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–350. doi: 10.1146/annurev.immunol.15.1.323. [DOI] [PubMed] [Google Scholar]
  44. Mastroeni P., Harrison J. A., Chabalgoity J. A., Hormaeche C. E. Effect of interleukin 12 neutralization on host resistance and gamma interferon production in mouse typhoid. Infect Immun. 1996 Jan;64(1):189–196. doi: 10.1128/iai.64.1.189-196.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Mishell R. I., Dutton R. W. Immunization of dissociated spleen cell cultures from normal mice. J Exp Med. 1967 Sep 1;126(3):423–442. doi: 10.1084/jem.126.3.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Muotiala A., Mäkelä P. H. Role of gamma interferon in late stages of murine salmonellosis. Infect Immun. 1993 Oct;61(10):4248–4253. doi: 10.1128/iai.61.10.4248-4253.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Nastala C. L., Edington H. D., McKinney T. G., Tahara H., Nalesnik M. A., Brunda M. J., Gately M. K., Wolf S. F., Schreiber R. D., Storkus W. J. Recombinant IL-12 administration induces tumor regression in association with IFN-gamma production. J Immunol. 1994 Aug 15;153(4):1697–1706. [PubMed] [Google Scholar]
  48. Nauciel C., Vilde F., Ronco E. Host response to infection with a temperature-sensitive mutant of Salmonella typhimurium in a susceptible and a resistant strain of mice. Infect Immun. 1985 Sep;49(3):523–527. doi: 10.1128/iai.49.3.523-527.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Ramarathinam L., Niesel D. W., Klimpel G. R. Salmonella typhimurium induces IFN-gamma production in murine splenocytes. Role of natural killer cells and macrophages. J Immunol. 1993 May 1;150(9):3973–3981. [PubMed] [Google Scholar]
  50. Ramarathinam L., Shaban R. A., Niesel D. W., Klimpel G. R. Interferon gamma (IFN-gamma) production by gut-associated lymphoid tissue and spleen following oral Salmonella typhimurium challenge. Microb Pathog. 1991 Nov;11(5):347–356. doi: 10.1016/0882-4010(91)90020-b. [DOI] [PubMed] [Google Scholar]
  51. Rao J. B., Chamberlain R. S., Bronte V., Carroll M. W., Irvine K. R., Moss B., Rosenberg S. A., Restifo N. P. IL-12 is an effective adjuvant to recombinant vaccinia virus-based tumor vaccines: enhancement by simultaneous B7-1 expression. J Immunol. 1996 May 1;156(9):3357–3365. [PMC free article] [PubMed] [Google Scholar]
  52. Saunders B. M., Zhan Y., Cheers C. Endogenous interleukin-12 is involved in resistance of mice to Mycobacterium avium complex infection. Infect Immun. 1995 Oct;63(10):4011–4015. doi: 10.1128/iai.63.10.4011-4015.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Schafer R., Eisenstein T. K. Natural killer cells mediate protection induced by a Salmonella aroA mutant. Infect Immun. 1992 Mar;60(3):791–797. doi: 10.1128/iai.60.3.791-797.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Schafer R., Nacy C. A., Eisenstein T. K. Induction of activated macrophages in C3H/HeJ mice by avirulent Salmonella. J Immunol. 1988 Mar 1;140(5):1638–1644. [PubMed] [Google Scholar]
  55. Scharton-Kersten T. M., Yap G., Magram J., Sher A. Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J Exp Med. 1997 Apr 7;185(7):1261–1273. doi: 10.1084/jem.185.7.1261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Scharton-Kersten T., Afonso L. C., Wysocka M., Trinchieri G., Scott P. IL-12 is required for natural killer cell activation and subsequent T helper 1 cell development in experimental leishmaniasis. J Immunol. 1995 May 15;154(10):5320–5330. [PubMed] [Google Scholar]
  57. Sedegah M., Finkelman F., Hoffman S. L. Interleukin 12 induction of interferon gamma-dependent protection against malaria. Proc Natl Acad Sci U S A. 1994 Oct 25;91(22):10700–10702. doi: 10.1073/pnas.91.22.10700. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Sternberg J., McGuigan F. Nitric oxide mediates suppression of T cell responses in murine Trypanosoma brucei infection. Eur J Immunol. 1992 Oct;22(10):2741–2744. doi: 10.1002/eji.1830221041. [DOI] [PubMed] [Google Scholar]
  59. Stevenson M. M., Tam M. F., Wolf S. F., Sher A. IL-12-induced protection against blood-stage Plasmodium chabaudi AS requires IFN-gamma and TNF-alpha and occurs via a nitric oxide-dependent mechanism. J Immunol. 1995 Sep 1;155(5):2545–2556. [PubMed] [Google Scholar]
  60. Takagi K., Nukaya I., Yasukawa K., Suketa Y. Inhibitory mechanisms of antibody production by nitrogen oxides released from activated macrophages during the immune response: relationship to energy consumption. Immunol Cell Biol. 1994 Jun;72(3):241–248. doi: 10.1038/icb.1994.36. [DOI] [PubMed] [Google Scholar]
  61. Trembleau S., Penna G., Bosi E., Mortara A., Gately M. K., Adorini L. Interleukin 12 administration induces T helper type 1 cells and accelerates autoimmune diabetes in NOD mice. J Exp Med. 1995 Feb 1;181(2):817–821. doi: 10.1084/jem.181.2.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Trinchieri G., Gerosa F. Immunoregulation by interleukin-12. J Leukoc Biol. 1996 Apr;59(4):505–511. doi: 10.1002/jlb.59.4.505. [DOI] [PubMed] [Google Scholar]
  63. Tripp C. S., Gately M. K., Hakimi J., Ling P., Unanue E. R. Neutralization of IL-12 decreases resistance to Listeria in SCID and C.B-17 mice. Reversal by IFN-gamma. J Immunol. 1994 Feb 15;152(4):1883–1887. [PubMed] [Google Scholar]
  64. Tripp C. S., Wolf S. F., Unanue E. R. Interleukin 12 and tumor necrosis factor alpha are costimulators of interferon gamma production by natural killer cells in severe combined immunodeficiency mice with listeriosis, and interleukin 10 is a physiologic antagonist. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3725–3729. doi: 10.1073/pnas.90.8.3725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Wigginton J. M., Kuhns D. B., Back T. C., Brunda M. J., Wiltrout R. H., Cox G. W. Interleukin 12 primes macrophages for nitric oxide production in vivo and restores depressed nitric oxide production by macrophages from tumor-bearing mice: implications for the antitumor activity of interleukin 12 and/or interleukin 2. Cancer Res. 1996 Mar 1;56(5):1131–1136. [PubMed] [Google Scholar]
  66. Wu L., Morahan P. S., Hendrzak J. A., Eisenstein T. K. Herpes simplex virus type 1 replication and IL-1 beta gene expression in mouse peritoneal macrophages activated in vivo by an attenuated Salmonella typhimurium vaccine or Corynebacterium parvum. Microb Pathog. 1994 Jun;16(6):387–399. doi: 10.1006/mpat.1994.1039. [DOI] [PubMed] [Google Scholar]
  67. Wynn T. A., Reynolds A., James S., Cheever A. W., Caspar P., Hieny S., Jankovic D., Strand M., Sher A. IL-12 enhances vaccine-induced immunity to schistosomes by augmenting both humoral and cell-mediated immune responses against the parasite. J Immunol. 1996 Nov 1;157(9):4068–4078. [PubMed] [Google Scholar]
  68. Wysocka M., Kubin M., Vieira L. Q., Ozmen L., Garotta G., Scott P., Trinchieri G. Interleukin-12 is required for interferon-gamma production and lethality in lipopolysaccharide-induced shock in mice. Eur J Immunol. 1995 Mar;25(3):672–676. doi: 10.1002/eji.1830250307. [DOI] [PubMed] [Google Scholar]
  69. Zhan Y., Cheers C. Endogenous interleukin-12 is involved in resistance to Brucella abortus infection. Infect Immun. 1995 Apr;63(4):1387–1390. doi: 10.1128/iai.63.4.1387-1390.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Zhou P., Sieve M. C., Bennett J., Kwon-Chung K. J., Tewari R. P., Gazzinelli R. T., Sher A., Seder R. A. IL-12 prevents mortality in mice infected with Histoplasma capsulatum through induction of IFN-gamma. J Immunol. 1995 Jul 15;155(2):785–795. [PubMed] [Google Scholar]
  71. Zídek Z., Lotzová E., Franková D., Savary C. A. Indirect stimulatory effects of murine interleukin-12 on in vitro production of nitric oxide by mouse peritoneal cells. J Interferon Cytokine Res. 1996 May;16(5):389–393. doi: 10.1089/jir.1996.16.389. [DOI] [PubMed] [Google Scholar]
  72. al-Ramadi B. K., Brodkin M. A., Mosser D. M., Eisenstein T. K. Immunosuppression induced by attenuated Salmonella. Evidence for mediation by macrophage precursors. J Immunol. 1991 Apr 15;146(8):2737–2746. [PubMed] [Google Scholar]
  73. al-Ramadi B. K., Greene J. M., Meissler J. J., Jr, Eisenstein T. K. Immunosuppression induced by attenuated Salmonella: effect of LPS responsiveness on development of suppression. Microb Pathog. 1992 Apr;12(4):267–278. doi: 10.1016/0882-4010(92)90045-p. [DOI] [PubMed] [Google Scholar]
  74. al-Ramadi B. K., Meissler J. J., Jr, Huang D., Eisenstein T. K. Immunosuppression induced by nitric oxide and its inhibition by interleukin-4. Eur J Immunol. 1992 Sep;22(9):2249–2254. doi: 10.1002/eji.1830220911. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES