Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Dec;65(12):4918–4925. doi: 10.1128/iai.65.12.4918-4925.1997

A strategy for rational design of fully synthetic glycopeptide conjugate vaccines.

P Chong 1, N Chan 1, A Kandil 1, B Tripet 1, O James 1, Y P Yang 1, S P Shi 1, M Klein 1
PMCID: PMC175709  PMID: 9393776

Abstract

The present study describes a strategy to rationally design fully synthetic glycopeptide conjugate vaccines. Glycopeptide immunogens were constructed by coupling synthetic oligosaccharides comprising repeating units of synthetic 3-beta-D-ribose-(1-1)-D-ribitol-5-phosphate (sPRP) to synthetic peptides containing potent T-helper cell determinants and B-cell epitopes of the Haemophilus influenzae type b (Hib) outer membrane proteins (OMPs) P1, P2, and P6. Rabbit immunogenicity studies revealed that some of these fully synthetic glycoconjugates were capable of eliciting high titers of both anti-PRP and anti-OMP immunoglobulin G antibodies. In addition, we systematically investigated the factors which could influence their immunogenicity. We observed that the magnitude of the anti-PRP antibody response markedly depended on the relative spatial orientation of sPRP and T-cell epitopes, the anti-PRP antibody response was enhanced when a multiple antigenic peptide was used as a carrier, the anti-PRP antibody response was optimal for three PRP repeating units, and lipidation of peptide-PRP conjugates had a minimal effect on the magnitude of the anti-PRP antibody response. The results of this study clearly demonstrate that coupling a carbohydrate hapten to a peptide can provide T-cell help and convert it into a T-cell-dependent antigen. The antisera raised against these conjugates were also found to be protective against Hib infection in the infant rat model of bacteremia.

Full Text

The Full Text of this article is available as a PDF (189.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P. W., Pichichero M. E., Stein E. C., Porcelli S., Betts R. F., Connuck D. M., Korones D., Insel R. A., Zahradnik J. M., Eby R. Effect of oligosaccharide chain length, exposed terminal group, and hapten loading on the antibody response of human adults and infants to vaccines consisting of Haemophilus influenzae type b capsular antigen unterminally coupled to the diphtheria protein CRM197. J Immunol. 1989 Apr 1;142(7):2464–2468. [PubMed] [Google Scholar]
  2. Anderson P. Intrinsic tritium labeling of the capsular polysaccharide antigen of Haemophilus influenzae type B. J Immunol. 1978 Mar;120(3):866–870. [PubMed] [Google Scholar]
  3. Calvo-Calle J. M., de Oliveira G. A., Clavijo P., Maracic M., Tam J. P., Lu Y. A., Nardin E. H., Nussenzweig R. S., Cochrane A. H. Immunogenicity of multiple antigen peptides containing B and non-repeat T cell epitopes of the circumsporozoite protein of Plasmodium falciparum. J Immunol. 1993 Feb 15;150(4):1403–1412. [PubMed] [Google Scholar]
  4. Chong P., Sia C., Sydor M., Klein M. Identification of a potent synthetic HIV1 immunogen compromising gag-P24 tandem T- and B-cell epitopes. FEBS Lett. 1990 May 21;264(2):231–234. doi: 10.1016/0014-5793(90)80255-h. [DOI] [PubMed] [Google Scholar]
  5. Chong P., Yang Y. P., Fahim R., McVerry P., Sia C., Klein M. Immunogenicity of overlapping synthetic peptides covering the entire sequence of Haemophilus influenzae type b outer membrane protein P2. Infect Immun. 1993 Jun;61(6):2653–2661. doi: 10.1128/iai.61.6.2653-2661.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chong P., Yang Y. P., Persaud D., Haer M., Tripet B., Tam E., Sia C., Klein M. Immunogenicity of synthetic peptides of Haemophilus influenzae type b outer membrane protein P1. Infect Immun. 1995 Oct;63(10):3751–3758. doi: 10.1128/iai.63.10.3751-3758.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cox J. H., Ivanyi J., Young D. B., Lamb J. R., Syred A. D., Francis M. J. Orientation of epitopes influences the immunogenicity of synthetic peptide dimers. Eur J Immunol. 1988 Dec;18(12):2015–2019. doi: 10.1002/eji.1830181222. [DOI] [PubMed] [Google Scholar]
  8. Dean S. P. Use of growth promoting hormones and beta-agonists. Vet Rec. 1994 Apr 9;134(15):395–396. doi: 10.1136/vr.134.15.395-c. [DOI] [PubMed] [Google Scholar]
  9. Granoff D. M., Anderson E. L., Osterholm M. T., Holmes S. J., McHugh J. E., Belshe R. B., Medley F., Murphy T. V. Differences in the immunogenicity of three Haemophilus influenzae type b conjugate vaccines in infants. J Pediatr. 1992 Aug;121(2):187–194. doi: 10.1016/s0022-3476(05)81186-2. [DOI] [PubMed] [Google Scholar]
  10. Granoff D. M., Holmes S. J., Belshe R. B., Osterholm M. T., McHugh J. E., Anderson E. L. Effect of carrier protein priming on antibody responses to Haemophilus influenzae type b conjugate vaccines in infants. JAMA. 1994 Oct 12;272(14):1116–1121. [PubMed] [Google Scholar]
  11. Greenberg D. P., Lieberman J. M., Marcy S. M., Wong V. K., Partridge S., Chang S. J., Chiu C. Y., Ward J. I. Enhanced antibody responses in infants given different sequences of heterogeneous Haemophilus influenzae type b conjugate vaccines. J Pediatr. 1995 Feb;126(2):206–211. doi: 10.1016/s0022-3476(95)70546-5. [DOI] [PubMed] [Google Scholar]
  12. Jennings H. J., Lugowski C. Immunochemistry of groups A, B, and C meningococcal polysaccharide-tetanus toxoid conjugates. J Immunol. 1981 Sep;127(3):1011–1018. [PubMed] [Google Scholar]
  13. Kandil A. A., Chan N., Klein M., Chong P. Chemical synthesis of Haemophilus influenzae glycopeptide conjugates. Glycoconj J. 1997 Jan;14(1):13–17. doi: 10.1023/a:1018500712733. [DOI] [PubMed] [Google Scholar]
  14. Kyd J. M., Dunkley M. L., Cripps A. W. Enhanced respiratory clearance of nontypeable Haemophilus influenzae following mucosal immunization with P6 in a rat model. Infect Immun. 1995 Aug;63(8):2931–2940. doi: 10.1128/iai.63.8.2931-2940.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levely M. E., Mitchell M. A., Nicholas J. A. Synthetic immunogens constructed from T-cell and B-cell stimulating peptides (T:B chimeras): preferential stimulation of unique T- and B-cell specificities is influenced by immunogen configuration. Cell Immunol. 1990 Jan;125(1):65–78. doi: 10.1016/0008-8749(90)90063-w. [DOI] [PubMed] [Google Scholar]
  16. Lieberman J. M., Greenberg D. P., Wong V. K., Partridge S., Chang S. J., Chiu C. Y., Ward J. I. Effect of neonatal immunization with diphtheria and tetanus toxoids on antibody responses to Haemophilus influenzae type b conjugate vaccines. J Pediatr. 1995 Feb;126(2):198–205. doi: 10.1016/s0022-3476(95)70545-7. [DOI] [PubMed] [Google Scholar]
  17. Mouritsen S., Meldal M., Christiansen-Brams I., Elsner H., Werdelin O. Attachment of oligosaccharides to peptide antigen profoundly affects binding to major histocompatibility complex class II molecules and peptide immunogenicity. Eur J Immunol. 1994 May;24(5):1066–1072. doi: 10.1002/eji.1830240509. [DOI] [PubMed] [Google Scholar]
  18. Munson R. S., Jr, Shenep J. L., Barenkamp S. J., Granoff D. M. Purification and comparison of outer membrane protein P2 from Haemophilus influenzae type b isolates. J Clin Invest. 1983 Aug;72(2):677–684. doi: 10.1172/JCI111017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Nelson M. B., Munson R. S., Jr, Apicella M. A., Sikkema D. J., Molleston J. P., Murphy T. F. Molecular conservation of the P6 outer membrane protein among strains of Haemophilus influenzae: analysis of antigenic determinants, gene sequences, and restriction fragment length polymorphisms. Infect Immun. 1991 Aug;59(8):2658–2663. doi: 10.1128/iai.59.8.2658-2663.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Panezutti H., James O., Hansen E. J., Choi Y., Harkness R. E., Klein M. H., Chong P. Identification of surface-exposed B-cell epitopes recognized by Haemophilus influenzae type b P1-specific monoclonal antibodies. Infect Immun. 1993 May;61(5):1867–1872. doi: 10.1128/iai.61.5.1867-1872.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Partidos C., Stanley C., Steward M. The effect of orientation of epitopes on the immunogenicity of chimeric synthetic peptides representing measles virus protein sequences. Mol Immunol. 1992 May;29(5):651–658. doi: 10.1016/0161-5890(92)90202-9. [DOI] [PubMed] [Google Scholar]
  22. Peeters C. C., Evenberg D., Hoogerhout P., Käyhty H., Saarinen L., van Boeckel C. A., van der Marel G. A., van Boom J. H., Poolman J. T. Synthetic trimer and tetramer of 3-beta-D-ribose-(1-1)-D-ribitol-5-phosphate conjugated to protein induce antibody responses to Haemophilus influenzae type b capsular polysaccharide in mice and monkeys. Infect Immun. 1992 May;60(5):1826–1833. doi: 10.1128/iai.60.5.1826-1833.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Redhead K., Watkins J., Barnard A., Mills K. H. Effective immunization against Bordetella pertussis respiratory infection in mice is dependent on induction of cell-mediated immunity. Infect Immun. 1993 Aug;61(8):3190–3198. doi: 10.1128/iai.61.8.3190-3198.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Riddles P. W., Blakeley R. L., Zerner B. Reassessment of Ellman's reagent. Methods Enzymol. 1983;91:49–60. doi: 10.1016/s0076-6879(83)91010-8. [DOI] [PubMed] [Google Scholar]
  25. Siber G. R., Anderson R., Habafy M., Gupta R. K. Development of a guinea pig model to assess immunogenicity of Haemophilus influenzae type b capsular polysaccharide conjugate vaccines. Vaccine. 1995 Apr;13(6):525–531. doi: 10.1016/0264-410x(94)00042-l. [DOI] [PubMed] [Google Scholar]
  26. Smith D. J., Taubman M. A., Holmberg C. F., Eastcott J., King W. F., Ali-Salaam P. Antigenicity and immunogenicity of a synthetic peptide derived from a glucan-binding domain of mutans streptococcal glucosyltransferase. Infect Immun. 1993 Jul;61(7):2899–2905. doi: 10.1128/iai.61.7.2899-2905.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tam J. P. Recent advances in multiple antigen peptides. J Immunol Methods. 1996 Sep 13;196(1):17–32. doi: 10.1016/0022-1759(96)00066-x. [DOI] [PubMed] [Google Scholar]
  28. Wiesmüller K. H., Bessler W., Jung G. Synthesis of the mitogenic S-[2,3-bis(palmitoyloxy)propyl]-N-palmitoylpentapeptide from Escherichia coli lipoprotein. Hoppe Seylers Z Physiol Chem. 1983 May;364(5):593–606. doi: 10.1515/bchm2.1983.364.1.593. [DOI] [PubMed] [Google Scholar]
  29. Yang Y. P., Munson R. S., Jr, Grass S., Chong P., Harkness R. E., Gisonni L., James O., Kwok Y., Klein M. H. Effect of lipid modification on the physicochemical, structural, antigenic and immunoprotective properties of Haemophilus influenzae outer membrane protein P6. Vaccine. 1997 Jun;15(9):976–987. doi: 10.1016/s0264-410x(96)00296-4. [DOI] [PubMed] [Google Scholar]
  30. de Velasco E. A., Merkus D., Anderton S., Verheul A. F., Lizzio E. F., Van der Zee R., Van Eden W., Hoffman T., Verhoef J., Snippe H. Synthetic peptides representing T-cell epitopes act as carriers in pneumococcal polysaccharide conjugate vaccines. Infect Immun. 1995 Mar;63(3):961–968. doi: 10.1128/iai.63.3.961-968.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES