Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Dec;65(12):5088–5095. doi: 10.1128/iai.65.12.5088-5095.1997

Escherichia coli cytolethal distending toxin blocks the HeLa cell cycle at the G2/M transition by preventing cdc2 protein kinase dephosphorylation and activation.

C Comayras 1, C Tasca 1, S Y Pérès 1, B Ducommun 1, E Oswald 1, J De Rycke 1
PMCID: PMC175733  PMID: 9393800

Abstract

Cytolethal distending toxins (CDT) constitute an emerging heterogeneous family of bacterial toxins whose common biological property is to inhibit the proliferation of cells in culture by blocking their cycle at G2/M phase. In this study, we investigated the molecular mechanisms underlying the block caused by CDT from Escherichia coli on synchronized HeLa cell cultures. To this end, we studied specifically the behavior of the two subunits of the complex that determines entry into mitosis, i.e., cyclin B1, the regulatory unit, and cdc2 protein kinase, the catalytic unit. We thus demonstrate that CDT causes cell accumulation in G2 and not in M, that it does not slow the progression of cells through S phase, and that it does not affect the normal increase of cyclin B1 from late S to G2. On the other hand, we show that CDT inhibits the kinase activity of cdc2 by preventing its dephosphorylation, an event which, in normal cells, triggers mitosis. This inhibitory activity was demonstrated for the three partially related CDTs so far described for E. coli. Moreover, we provide evidence that cells exposed to CDT during G2 and M phases are blocked only at the subsequent G2 phase. This observation means that the toxin triggers a mechanism of cell arrest that is initiated in S phase and therefore possibly related to the DNA damage checkpoint system.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barth H., Hoffmann I., Kinzel V. Radiation with 1 Gy prevents the activation of the mitotic inducers mitosis-promoting factor (MPF) and cdc25-C in HeLa cells. Cancer Res. 1996 May 15;56(10):2268–2272. [PubMed] [Google Scholar]
  2. Borgne A., Meijer L. Sequential dephosphorylation of p34(cdc2) on Thr-14 and Tyr-15 at the prophase/metaphase transition. J Biol Chem. 1996 Nov 1;271(44):27847–27854. doi: 10.1074/jbc.271.44.27847. [DOI] [PubMed] [Google Scholar]
  3. Cope L. D., Lumbley S., Latimer J. L., Klesney-Tait J., Stevens M. K., Johnson L. S., Purven M., Munson R. S., Jr, Lagergard T., Radolf J. D. A diffusible cytotoxin of Haemophilus ducreyi. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):4056–4061. doi: 10.1073/pnas.94.8.4056. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Draetta G., Beach D. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell. 1988 Jul 1;54(1):17–26. doi: 10.1016/0092-8674(88)90175-4. [DOI] [PubMed] [Google Scholar]
  5. Dunphy W. G. The decision to enter mitosis. Trends Cell Biol. 1994 Jun;4(6):202–207. doi: 10.1016/0962-8924(94)90142-2. [DOI] [PubMed] [Google Scholar]
  6. Elledge S. J. Cell cycle checkpoints: preventing an identity crisis. Science. 1996 Dec 6;274(5293):1664–1672. doi: 10.1126/science.274.5293.1664. [DOI] [PubMed] [Google Scholar]
  7. Gong J., Traganos F., Darzynkiewicz Z. Discrimination of G2 and mitotic cells by flow cytometry based on different expression of cyclins A and B1. Exp Cell Res. 1995 Sep;220(1):226–231. doi: 10.1006/excr.1995.1310. [DOI] [PubMed] [Google Scholar]
  8. Heald R., McLoughlin M., McKeon F. Human wee1 maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell. 1993 Aug 13;74(3):463–474. doi: 10.1016/0092-8674(93)80048-j. [DOI] [PubMed] [Google Scholar]
  9. Hwang E. S., Naeger L. K., DiMaio D. Activation of the endogenous p53 growth inhibitory pathway in HeLa cervical carcinoma cells by expression of the bovine papillomavirus E2 gene. Oncogene. 1996 Feb 15;12(4):795–803. [PubMed] [Google Scholar]
  10. Jackson P. K. Cell cycle: cull and destroy. Curr Biol. 1996 Oct 1;6(10):1209–1212. doi: 10.1016/s0960-9822(96)00697-5. [DOI] [PubMed] [Google Scholar]
  11. Johnson W. M., Lior H. A new heat-labile cytolethal distending toxin (CLDT) produced by Campylobacter spp. Microb Pathog. 1988 Feb;4(2):115–126. doi: 10.1016/0882-4010(88)90053-8. [DOI] [PubMed] [Google Scholar]
  12. Lock R. B., Galperina O. V., Feldhoff R. C., Rhodes L. J. Concentration-dependent differences in the mechanisms by which caffeine potentiates etoposide cytotoxicity in HeLa cells. Cancer Res. 1994 Sep 15;54(18):4933–4939. [PubMed] [Google Scholar]
  13. Maity A., Hwang A., Janss A., Phillips P., McKenna W. G., Muschel R. J. Delayed cyclin B1 expression during the G2 arrest following DNA damage. Oncogene. 1996 Oct 17;13(8):1647–1657. [PubMed] [Google Scholar]
  14. Metting N. F., Little J. B. Transient failure to dephosphorylate the cdc2-cyclin B1 complex accompanies radiation-induced G2-phase arrest in HeLa cells. Radiat Res. 1995 Sep;143(3):286–292. [PubMed] [Google Scholar]
  15. Norbury C., Nurse P. Animal cell cycles and their control. Annu Rev Biochem. 1992;61:441–470. doi: 10.1146/annurev.bi.61.070192.002301. [DOI] [PubMed] [Google Scholar]
  16. Ohya T., Tominaga K., Nakazawa M. Production of cytolethal distending toxin (CLDT) by Campylobacter fetus subsp. fetus isolated from calves. J Vet Med Sci. 1993 Jun;55(3):507–509. doi: 10.1292/jvms.55.507. [DOI] [PubMed] [Google Scholar]
  17. Okuda J., Fukumoto M., Takeda Y., Nishibuchi M. Examination of diarrheagenicity of cytolethal distending toxin: suckling mouse response to the products of the cdtABC genes of Shigella dysenteriae. Infect Immun. 1997 Feb;65(2):428–433. doi: 10.1128/iai.65.2.428-433.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Okuda J., Kurazono H., Takeda Y. Distribution of the cytolethal distending toxin A gene (cdtA) among species of Shigella and Vibrio, and cloning and sequencing of the cdt gene from Shigella dysenteriae. Microb Pathog. 1995 Mar;18(3):167–172. doi: 10.1016/s0882-4010(95)90022-5. [DOI] [PubMed] [Google Scholar]
  19. Parker L. L., Sylvestre P. J., Byrnes M. J., 3rd, Liu F., Piwnica-Worms H. Identification of a 95-kDa WEE1-like tyrosine kinase in HeLa cells. Proc Natl Acad Sci U S A. 1995 Oct 10;92(21):9638–9642. doi: 10.1073/pnas.92.21.9638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Paulovich A. G., Toczyski D. P., Hartwell L. H. When checkpoints fail. Cell. 1997 Feb 7;88(3):315–321. doi: 10.1016/s0092-8674(00)81870-x. [DOI] [PubMed] [Google Scholar]
  21. Pickett C. L., Cottle D. L., Pesci E. C., Bikah G. Cloning, sequencing, and expression of the Escherichia coli cytolethal distending toxin genes. Infect Immun. 1994 Mar;62(3):1046–1051. doi: 10.1128/iai.62.3.1046-1051.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pickett C. L., Pesci E. C., Cottle D. L., Russell G., Erdem A. N., Zeytin H. Prevalence of cytolethal distending toxin production in Campylobacter jejuni and relatedness of Campylobacter sp. cdtB gene. Infect Immun. 1996 Jun;64(6):2070–2078. doi: 10.1128/iai.64.6.2070-2078.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pines J., Hunter T. Human cyclins A and B1 are differentially located in the cell and undergo cell cycle-dependent nuclear transport. J Cell Biol. 1991 Oct;115(1):1–17. doi: 10.1083/jcb.115.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Planelles V., Jowett J. B., Li Q. X., Xie Y., Hahn B., Chen I. S. Vpr-induced cell cycle arrest is conserved among primate lentiviruses. J Virol. 1996 Apr;70(4):2516–2524. doi: 10.1128/jvi.70.4.2516-2524.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Poon B., Jowett J. B., Stewart S. A., Armstrong R. W., Rishton G. M., Chen I. S. Human immunodeficiency virus type 1 vpr gene induces phenotypic effects similar to those of the DNA alkylating agent, nitrogen mustard. J Virol. 1997 May;71(5):3961–3971. doi: 10.1128/jvi.71.5.3961-3971.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pérès S. Y., Marchès O., Daigle F., Nougayrède J. P., Herault F., Tasca C., De Rycke J., Oswald E. A new cytolethal distending toxin (CDT) from Escherichia coli producing CNF2 blocks HeLa cell division in G2/M phase. Mol Microbiol. 1997 Jun;24(5):1095–1107. doi: 10.1046/j.1365-2958.1997.4181785.x. [DOI] [PubMed] [Google Scholar]
  27. Scott D. A., Kaper J. B. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. Infect Immun. 1994 Jan;62(1):244–251. doi: 10.1128/iai.62.1.244-251.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tsao Y. P., D'Arpa P., Liu L. F. The involvement of active DNA synthesis in camptothecin-induced G2 arrest: altered regulation of p34cdc2/cyclin B. Cancer Res. 1992 Apr 1;52(7):1823–1829. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES