Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Dec;65(12):5110–5117. doi: 10.1128/iai.65.12.5110-5117.1997

Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence.

B Jahn 1, A Koch 1, A Schmidt 1, G Wanner 1, H Gehringer 1, S Bhakdi 1, A A Brakhage 1
PMCID: PMC175736  PMID: 9393803

Abstract

Aspergillus fumigatus is an important pathogen of immunocompromised hosts, causing pneumonia and invasive disseminated disease with high mortality. The factors contributing to the predominance of A. fumigatus as an opportunistic pathogen are largely unknown. Since the survival of conidia in the host is a prerequisite for establishing disease, we have been attempting to identify factors which are associated with conidia and, simultaneously, important for infection. Therefore, an A. fumigatus mutant strain (white [W]) lacking conidial pigmentation was isolated. Scanning electron microscopy revealed that conidia of the W mutant also differed in their surface morphology from those of the wild type (WT). Mutant (W) and WT conidia were compared with respect to their capacities to stimulate an oxidative response in human phagocytes, their intracellular survival in human monocytes, and virulence in a murine animal model. Luminol-dependent chemiluminescence was 10-fold higher when human neutrophils or monocytes were challenged with W conidia compared with WT conidia. Furthermore, mutant conidia were more susceptible to killing by oxidants in vitro and were more efficiently damaged by human monocytes in vitro than WT conidia. In a murine animal model, the W mutant strain showed reduced virulence compared with the WT. A reversion analysis of the W mutant demonstrated that all phenotypes associated with the W mutant, i.e., altered conidial surface, amount of reactive oxygen species release, susceptibility to hydrogen peroxide, and reduced virulence in an murine animal model, coreverted in revertants which had regained the ability to produce green spores. This finding strongly suggests that the A. fumigatus mutant described here carries a single mutation which caused all of the observed phenotypes. Our results suggest that the conidium pigment or a structural feature related to it contributes to fungal resistance against host defense mechanisms in A. fumigatus infections.

Full Text

The Full Text of this article is available as a PDF (921.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arruda L. K., Mann B. J., Chapman M. D. Selective expression of a major allergen and cytotoxin, Asp f I, in Aspergillus fumigatus. Implications for the immunopathogenesis of Aspergillus-related diseases. J Immunol. 1992 Nov 15;149(10):3354–3359. [PubMed] [Google Scholar]
  2. Arruda L. K., Platts-Mills T. A., Fox J. W., Chapman M. D. Aspergillus fumigatus allergen I, a major IgE-binding protein, is a member of the mitogillin family of cytotoxins. J Exp Med. 1990 Nov 1;172(5):1529–1532. doi: 10.1084/jem.172.5.1529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aufauvre-Brown A., Cohen J., Holden D. W. Use of randomly amplified polymorphic DNA markers to distinguish isolates of Aspergillus fumigatus. J Clin Microbiol. 1992 Nov;30(11):2991–2993. doi: 10.1128/jcm.30.11.2991-2993.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Babior B. M. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med. 1978 Mar 23;298(12):659–668. doi: 10.1056/NEJM197803232981205. [DOI] [PubMed] [Google Scholar]
  5. Bhakdi S., Weller U., Walev I., Martin E., Jonas D., Palmer M. A guide to the use of pore-forming toxins for controlled permeabilization of cell membranes. Med Microbiol Immunol. 1993 Sep;182(4):167–175. doi: 10.1007/BF00219946. [DOI] [PubMed] [Google Scholar]
  6. Borgia P. T., Dodge C. L., Eagleton L. E., Adams T. H. Bidirectional gene transfer between Aspergillus fumigatus and Aspergillus nidulans. FEMS Microbiol Lett. 1994 Oct 1;122(3):227–231. doi: 10.1111/j.1574-6968.1994.tb07172.x. [DOI] [PubMed] [Google Scholar]
  7. Bouchara J. P., Tronchin G., Larcher G., Chabasse D. The search for virulence determinants in Aspergillus fumigatus. Trends Microbiol. 1995 Aug;3(8):327–330. doi: 10.1016/s0966-842x(00)88965-9. [DOI] [PubMed] [Google Scholar]
  8. Brakhage A. A., Van den Brulle J. Use of reporter genes to identify recessive trans-acting mutations specifically involved in the regulation of Aspergillus nidulans penicillin biosynthesis genes. J Bacteriol. 1995 May;177(10):2781–2788. doi: 10.1128/jb.177.10.2781-2788.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Coulot P., Bouchara J. P., Renier G., Annaix V., Planchenault C., Tronchin G., Chabasse D. Specific interaction of Aspergillus fumigatus with fibrinogen and its role in cell adhesion. Infect Immun. 1994 Jun;62(6):2169–2177. doi: 10.1128/iai.62.6.2169-2177.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Denning D. W., Hall L., Jackson M., Hollis S. Efficacy of D0870 compared with those of itraconazole and amphotericin B in two murine models of invasive aspergillosis. Antimicrob Agents Chemother. 1995 Aug;39(8):1809–1814. doi: 10.1128/aac.39.8.1809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Graybill J. R., Ahrens J. Itraconazole treatment of murine aspergillosis. Sabouraudia. 1985 Jun;23(3):219–223. doi: 10.1080/00362178585380321. [DOI] [PubMed] [Google Scholar]
  12. Holden D. W., Tang C. M., Smith J. M. Molecular genetics of Aspergillus pathogenicity. Antonie Van Leeuwenhoek. 1994;65(3):251–255. doi: 10.1007/BF00871953. [DOI] [PubMed] [Google Scholar]
  13. Jacobson E. S., Hove E., Emery H. S. Antioxidant function of melanin in black fungi. Infect Immun. 1995 Dec;63(12):4944–4945. doi: 10.1128/iai.63.12.4944-4945.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jacobson E. S., Tinnell S. B. Antioxidant function of fungal melanin. J Bacteriol. 1993 Nov;175(21):7102–7104. doi: 10.1128/jb.175.21.7102-7104.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Jahn B., Martin E., Stueben A., Bhakdi S. Susceptibility testing of Candida albicans and Aspergillus species by a simple microtiter menadione-augmented 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. J Clin Microbiol. 1995 Mar;33(3):661–667. doi: 10.1128/jcm.33.3.661-667.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jahn B., Stüben A., Bhakdi S. Colorimetric susceptibility testing for Aspergillus fumigatus: comparison of menadione-augmented 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and Alamar blue tests. J Clin Microbiol. 1996 Aug;34(8):2039–2041. doi: 10.1128/jcm.34.8.2039-2041.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kolattukudy P. E., Lee J. D., Rogers L. M., Zimmerman P., Ceselski S., Fox B., Stein B., Copelan E. A. Evidence for possible involvement of an elastolytic serine protease in aspergillosis. Infect Immun. 1993 Jun;61(6):2357–2368. doi: 10.1128/iai.61.6.2357-2368.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kramer M. R., Marshall S. E., Starnes V. A., Gamberg P., Amitai Z., Theodore J. Infectious complications in heart-lung transplantation. Analysis of 200 episodes. Arch Intern Med. 1993 Sep 13;153(17):2010–2016. [PubMed] [Google Scholar]
  19. Kwon-Chung K. J., Polacheck I., Popkin T. J. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol. 1982 Jun;150(3):1414–1421. doi: 10.1128/jb.150.3.1414-1421.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kwon-Chung K. J., Rhodes J. C. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun. 1986 Jan;51(1):218–223. doi: 10.1128/iai.51.1.218-223.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lamy B., Moutaouakil M., Latge J. P., Davies J. Secretion of a potential virulence factor, a fungal ribonucleotoxin, during human aspergillosis infections. Mol Microbiol. 1991 Jul;5(7):1811–1815. doi: 10.1111/j.1365-2958.1991.tb01930.x. [DOI] [PubMed] [Google Scholar]
  22. Levitz S. M., Diamond R. D. A rapid colorimetric assay of fungal viability with the tetrazolium salt MTT. J Infect Dis. 1985 Nov;152(5):938–945. doi: 10.1093/infdis/152.5.938. [DOI] [PubMed] [Google Scholar]
  23. Levitz S. M., Diamond R. D. Mechanisms of resistance of Aspergillus fumigatus Conidia to killing by neutrophils in vitro. J Infect Dis. 1985 Jul;152(1):33–42. doi: 10.1093/infdis/152.1.33. [DOI] [PubMed] [Google Scholar]
  24. Litzka O., Bergh K. T., Brakhage A. A. Analysis of the regulation of the Aspergillus nidulans penicillin biosynthesis gene aat (penDE), which encodes acyl coenzyme A:6-aminopenicillanic acid acyltransferase. Mol Gen Genet. 1995 Dec 15;249(5):557–569. doi: 10.1007/BF00290581. [DOI] [PubMed] [Google Scholar]
  25. Martin E., Bhakdi S. Quantitative analysis of opsonophagocytosis and of killing of Candida albicans by human peripheral blood leukocytes by using flow cytometry. J Clin Microbiol. 1991 Sep;29(9):2013–2023. doi: 10.1128/jcm.29.9.2013-2023.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Martin E., Stüben A., Görz A., Weller U., Bhakdi S. Novel aspect of amphotericin B action: accumulation in human monocytes potentiates killing of phagocytosed Candida albicans. Antimicrob Agents Chemother. 1994 Jan;38(1):13–22. doi: 10.1128/aac.38.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. McWhinney P. H., Kibbler C. C., Hamon M. D., Smith O. P., Gandhi L., Berger L. A., Walesby R. K., Hoffbrand A. V., Prentice H. G. Progress in the diagnosis and management of aspergillosis in bone marrow transplantation: 13 years' experience. Clin Infect Dis. 1993 Sep;17(3):397–404. doi: 10.1093/clinids/17.3.397. [DOI] [PubMed] [Google Scholar]
  28. Monod M., Paris S., Sanglard D., Jaton-Ogay K., Bille J., Latgé J. P. Isolation and characterization of a secreted metalloprotease of Aspergillus fumigatus. Infect Immun. 1993 Oct;61(10):4099–4104. doi: 10.1128/iai.61.10.4099-4104.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Monod M., Paris S., Sarfati J., Jaton-Ogay K., Ave P., Latgé J. P. Virulence of alkaline protease-deficient mutants of Aspergillus fumigatus. FEMS Microbiol Lett. 1993 Jan 1;106(1):39–46. doi: 10.1111/j.1574-6968.1993.tb05932.x. [DOI] [PubMed] [Google Scholar]
  30. Monod M., Togni G., Rahalison L., Frenk E. Isolation and characterisation of an extracellular alkaline protease of Aspergillus fumigatus. J Med Microbiol. 1991 Jul;35(1):23–28. doi: 10.1099/00222615-35-1-23. [DOI] [PubMed] [Google Scholar]
  31. Moser M., Crameri R., Menz G., Schneider T., Dudler T., Virchow C., Gmachl M., Blaser K., Suter M. Cloning and expression of recombinant Aspergillus fumigatus allergen I/a (rAsp f I/a) with IgE binding and type I skin test activity. J Immunol. 1992 Jul 15;149(2):454–460. [PubMed] [Google Scholar]
  32. Musial C. E., Cockerill F. R., 3rd, Roberts G. D. Fungal infections of the immunocompromised host: clinical and laboratory aspects. Clin Microbiol Rev. 1988 Oct;1(4):349–364. doi: 10.1128/cmr.1.4.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Paris S., Monod M., Diaquin M., Lamy B., Arruda L. K., Punt P. J., Latgé J. P. A transformant of Aspergillus fumigatus deficient in the antigenic cytotoxin ASPFI. FEMS Microbiol Lett. 1993 Jul 15;111(1):31–36. doi: 10.1111/j.1574-6968.1993.tb06357.x. [DOI] [PubMed] [Google Scholar]
  34. Reichard U., Büttner S., Eiffert H., Staib F., Rüchel R. Purification and characterisation of an extracellular serine proteinase from Aspergillus fumigatus and its detection in tissue. J Med Microbiol. 1990 Dec;33(4):243–251. doi: 10.1099/00222615-33-4-243. [DOI] [PubMed] [Google Scholar]
  35. Reichard U., Monod M., Rüchel R. Molecular cloning and sequencing of the gene encoding an extracellular aspartic proteinase from Aspergillus fumigatus. FEMS Microbiol Lett. 1995 Jul 15;130(1):69–74. doi: 10.1016/0378-1097(95)00185-8. [DOI] [PubMed] [Google Scholar]
  36. Roilides E., Holmes A., Blake C., Venzon D., Pizzo P. A., Walsh T. J. Antifungal activity of elutriated human monocytes against Aspergillus fumigatus hyphae: enhancement by granulocyte-macrophage colony-stimulating factor and interferon-gamma. J Infect Dis. 1994 Oct;170(4):894–899. doi: 10.1093/infdis/170.4.894. [DOI] [PubMed] [Google Scholar]
  37. Roilides E., Uhlig K., Venzon D., Pizzo P. A., Walsh T. J. Prevention of corticosteroid-induced suppression of human polymorphonuclear leukocyte-induced damage of Aspergillus fumigatus hyphae by granulocyte colony-stimulating factor and gamma interferon. Infect Immun. 1993 Nov;61(11):4870–4877. doi: 10.1128/iai.61.11.4870-4877.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rowlands R. T., Turner G. Nuclear and extranuclear inheritance of oligomycin resistance in Aspergillus nidulans. Mol Gen Genet. 1973 Nov 12;126(3):201–216. doi: 10.1007/BF00267531. [DOI] [PubMed] [Google Scholar]
  39. Smith J. M., Tang C. M., Van Noorden S., Holden D. W. Virulence of Aspergillus fumigatus double mutants lacking restriction and an alkaline protease in a low-dose model of invasive pulmonary aspergillosis. Infect Immun. 1994 Dec;62(12):5247–5254. doi: 10.1128/iai.62.12.5247-5254.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Stephan J. L., Vlekova V., Le Deist F., Blanche S., Donadieu J., De Saint-Basile G., Durandy A., Griscelli C., Fischer A. Severe combined immunodeficiency: a retrospective single-center study of clinical presentation and outcome in 117 patients. J Pediatr. 1993 Oct;123(4):564–572. doi: 10.1016/s0022-3476(05)80951-5. [DOI] [PubMed] [Google Scholar]
  41. Tronchin G., Bouchara J. P., Larcher G., Lissitzky J. C., Chabasse D. Interaction between Aspergillus fumigatus and basement membrane laminin: binding and substrate degradation. Biol Cell. 1993;77(2):201–208. doi: 10.1016/s0248-4900(05)80189-3. [DOI] [PubMed] [Google Scholar]
  42. Van Cutsem J., Van Gerven F., Janssen P. A. Activity of orally, topically, and parenterally administered itraconazole in the treatment of superficial and deep mycoses: animal models. Rev Infect Dis. 1987 Jan-Feb;9 (Suppl 1):S15–S32. doi: 10.1093/clinids/9.supplement_1.s15. [DOI] [PubMed] [Google Scholar]
  43. Wang Y., Aisen P., Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun. 1995 Aug;63(8):3131–3136. doi: 10.1128/iai.63.8.3131-3136.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Wang Y., Casadevall A. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun. 1994 Jul;62(7):3004–3007. doi: 10.1128/iai.62.7.3004-3007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Washburn R. G., Gallin J. I., Bennett J. E. Oxidative killing of Aspergillus fumigatus proceeds by parallel myeloperoxidase-dependent and -independent pathways. Infect Immun. 1987 Sep;55(9):2088–2092. doi: 10.1128/iai.55.9.2088-2092.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Watson F., Robinson J., Edwards S. W. Protein kinase C-dependent and -independent activation of the NADPH oxidase of human neutrophils. J Biol Chem. 1991 Apr 25;266(12):7432–7439. [PubMed] [Google Scholar]
  47. Zuger A., Louie E., Holzman R. S., Simberkoff M. S., Rahal J. J. Cryptococcal disease in patients with the acquired immunodeficiency syndrome. Diagnostic features and outcome of treatment. Ann Intern Med. 1986 Feb;104(2):234–240. doi: 10.7326/0003-4819-104-2-234. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES