Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Oct;74(10):1364–1370. doi: 10.1136/jnnp.74.10.1364

Molecular pathogenesis of neuroinflammation

M Bradl 1, R Hohlfeld 1
PMCID: PMC1757406  PMID: 14570827

Full Text

The Full Text of this article is available as a PDF (546.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelmann M., Wood J., Benzel I., Fiori P., Lassmann H., Matthieu J. M., Gardinier M. V., Dornmair K., Linington C. The N-terminal domain of the myelin oligodendrocyte glycoprotein (MOG) induces acute demyelinating experimental autoimmune encephalomyelitis in the Lewis rat. J Neuroimmunol. 1995 Dec;63(1):17–27. doi: 10.1016/0165-5728(95)00124-7. [DOI] [PubMed] [Google Scholar]
  2. Akassoglou K., Bauer J., Kassiotis G., Pasparakis M., Lassmann H., Kollias G., Probert L. Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am J Pathol. 1998 Sep;153(3):801–813. doi: 10.1016/S0002-9440(10)65622-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Babbe H., Roers A., Waisman A., Lassmann H., Goebels N., Hohlfeld R., Friese M., Schröder R., Deckert M., Schmidt S. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med. 2000 Aug 7;192(3):393–404. doi: 10.1084/jem.192.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barker C. F., Billingham R. E. Immunologically privileged sites. Adv Immunol. 1977;25:1–54. [PubMed] [Google Scholar]
  5. Bauer Jan, Bradl Monika, Klein Matthias, Leisser Marianne, Deckwerth Thomas L., Wekerle Hartmut, Lassmann Hans. Endoplasmic reticulum stress in PLP-overexpressing transgenic rats: gray matter oligodendrocytes are more vulnerable than white matter oligodendrocytes. J Neuropathol Exp Neurol. 2002 Jan;61(1):12–22. doi: 10.1093/jnen/61.1.12. [DOI] [PubMed] [Google Scholar]
  6. Ben-Nun A., Wekerle H., Cohen I. R. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur J Immunol. 1981 Mar;11(3):195–199. doi: 10.1002/eji.1830110307. [DOI] [PubMed] [Google Scholar]
  7. Besser M., Wank R. Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol. 1999 Jun 1;162(11):6303–6306. [PubMed] [Google Scholar]
  8. Bradl M., Bauer J., Inomata T., Zielasek J., Nave K. A., Toyka K., Lassmann H., Wekerle H. Transgenic Lewis rats overexpressing the proteolipid protein gene: myelin degeneration and its effect on T cell-mediated experimental autoimmune encephalomyelitis. Acta Neuropathol. 1999 Jun;97(6):595–606. doi: 10.1007/s004010051035. [DOI] [PubMed] [Google Scholar]
  9. Bradl M., Flügel A. The role of T cells in brain pathology. Curr Top Microbiol Immunol. 2002;265:141–162. doi: 10.1007/978-3-662-09525-6_7. [DOI] [PubMed] [Google Scholar]
  10. Callan M. F., Tan L., Annels N., Ogg G. S., Wilson J. D., O'Callaghan C. A., Steven N., McMichael A. J., Rickinson A. B. Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus In vivo. J Exp Med. 1998 May 4;187(9):1395–1402. doi: 10.1084/jem.187.9.1395. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cerundolo V. Use of major histocompatibility complex class I tetramers to monitor tumor-specific cytotoxic T lymphocyte response in melanoma patients. Cancer Chemother Pharmacol. 2000;46 (Suppl):S83–S85. doi: 10.1007/pl00014056. [DOI] [PubMed] [Google Scholar]
  12. Cserr H. F., Harling-Berg C. J., Knopf P. M. Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol. 1992 Oct;2(4):269–276. doi: 10.1111/j.1750-3639.1992.tb00703.x. [DOI] [PubMed] [Google Scholar]
  13. Cunliffe Sharon L., Wyer Jessica R., Sutton Julian K., Lucas Michaela, Harcourt Gillian, Klenerman Paul, McMichael Andrew J., Kelleher Anthony D. Optimization of peptide linker length in production of MHC class II/peptide tetrameric complexes increases yield and stability, and allows identification of antigen-specific CD4+T cells in peripheral blood mononuclear cells. Eur J Immunol. 2002 Dec;32(12):3366–3375. doi: 10.1002/1521-4141(200212)32:12<3366::AID-IMMU3366>3.0.CO;2-#. [DOI] [PubMed] [Google Scholar]
  14. EINSTEIN E. R., ROBERTSON D. M., DICAPRIO J. M., MOORE W. The isolation from bovine spinal cord of a homogeneous protein with encephalitogenic activity. J Neurochem. 1962 Jul-Aug;9:353–361. doi: 10.1111/j.1471-4159.1962.tb09461.x. [DOI] [PubMed] [Google Scholar]
  15. Flügel A., Berkowicz T., Ritter T., Labeur M., Jenne D. E., Li Z., Ellwart J. W., Willem M., Lassmann H., Wekerle H. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity. 2001 May;14(5):547–560. doi: 10.1016/s1074-7613(01)00143-1. [DOI] [PubMed] [Google Scholar]
  16. Flügel A., Matsumuro K., Neumann H., Klinkert W. E., Birnbacher R., Lassmann H., Otten U., Wekerle H. Anti-inflammatory activity of nerve growth factor in experimental autoimmune encephalomyelitis: inhibition of monocyte transendothelial migration. Eur J Immunol. 2001 Jan;31(1):11–22. doi: 10.1002/1521-4141(200101)31:1<11::AID-IMMU11>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  17. Flügel A., Willem M., Berkowicz T., Wekerle H. Gene transfer into CD4+ T lymphocytes: green fluorescent protein-engineered, encephalitogenic T cells illuminate brain autoimmune responses. Nat Med. 1999 Jul;5(7):843–847. doi: 10.1038/10567. [DOI] [PubMed] [Google Scholar]
  18. Goebels N., Hofstetter H., Schmidt S., Brunner C., Wekerle H., Hohlfeld R. Repertoire dynamics of autoreactive T cells in multiple sclerosis patients and healthy subjects: epitope spreading versus clonal persistence. Brain. 2000 Mar;123(Pt 3):508–518. doi: 10.1093/brain/123.3.508. [DOI] [PubMed] [Google Scholar]
  19. Goverman J., Woods A., Larson L., Weiner L. P., Hood L., Zaller D. M. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmunity. Cell. 1993 Feb 26;72(4):551–560. doi: 10.1016/0092-8674(93)90074-z. [DOI] [PubMed] [Google Scholar]
  20. Head J. R., Griffin W. S. Functional capacity of solid tissue transplants in the brain: evidence for immunological privilege. Proc R Soc Lond B Biol Sci. 1985 May 22;224(1236):375–387. doi: 10.1098/rspb.1985.0039. [DOI] [PubMed] [Google Scholar]
  21. Hickey W. F., Hsu B. L., Kimura H. T-lymphocyte entry into the central nervous system. J Neurosci Res. 1991 Feb;28(2):254–260. doi: 10.1002/jnr.490280213. [DOI] [PubMed] [Google Scholar]
  22. Hjelmström P., Juedes A. E., Fjell J., Ruddle N. H. B-cell-deficient mice develop experimental allergic encephalomyelitis with demyelination after myelin oligodendrocyte glycoprotein sensitization. J Immunol. 1998 Nov 1;161(9):4480–4483. [PubMed] [Google Scholar]
  23. Hofbauer Monika, Wiesener Solveigh, Babbe Holger, Roers Axel, Wekerle Hartmut, Dornmair Klaus, Hohlfeld Reinhard, Goebels Norbert. Clonal tracking of autoaggressive T cells in polymyositis by combining laser microdissection, single-cell PCR, and CDR3-spectratype analysis. Proc Natl Acad Sci U S A. 2003 Mar 21;100(7):4090–4095. doi: 10.1073/pnas.0236183100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hohlfeld R. Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain. 1997 May;120(Pt 5):865–916. doi: 10.1093/brain/120.5.865. [DOI] [PubMed] [Google Scholar]
  25. Horwitz M. S., Evans C. F., McGavern D. B., Rodriguez M., Oldstone M. B. Primary demyelination in transgenic mice expressing interferon-gamma. Nat Med. 1997 Sep;3(9):1037–1041. doi: 10.1038/nm0997-1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ibrahim S. M., Mix E., Böttcher T., Koczan D., Gold R., Rolfs A., Thiesen H. J. Gene expression profiling of the nervous system in murine experimental autoimmune encephalomyelitis. Brain. 2001 Oct;124(Pt 10):1927–1938. doi: 10.1093/brain/124.10.1927. [DOI] [PubMed] [Google Scholar]
  27. Jones Richard E., Bourdette Dennis, Moes Nicole, Vandenbark Arthur, Zamora Alex, Offner Halina. Epitope spreading is not required for relapses in experimental autoimmune encephalomyelitis. J Immunol. 2003 Feb 15;170(4):1690–1698. doi: 10.4049/jimmunol.170.4.1690. [DOI] [PubMed] [Google Scholar]
  28. Kagawa T., Ikenaka K., Inoue Y., Kuriyama S., Tsujii T., Nakao J., Nakajima K., Aruga J., Okano H., Mikoshiba K. Glial cell degeneration and hypomyelination caused by overexpression of myelin proteolipid protein gene. Neuron. 1994 Aug;13(2):427–442. doi: 10.1016/0896-6273(94)90358-1. [DOI] [PubMed] [Google Scholar]
  29. Kerschensteiner M., Gallmeier E., Behrens L., Leal V. V., Misgeld T., Klinkert W. E., Kolbeck R., Hoppe E., Oropeza-Wekerle R. L., Bartke I. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med. 1999 Mar 1;189(5):865–870. doi: 10.1084/jem.189.5.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Kerschensteiner Martin, Stadelmann Christine, Dechant Georg, Wekerle Hartmut, Hohlfeld Reinhard. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol. 2003 Mar;53(3):292–304. doi: 10.1002/ana.10446. [DOI] [PubMed] [Google Scholar]
  31. Kojima K., Berger T., Lassmann H., Hinze-Selch D., Zhang Y., Gehrmann J., Reske K., Wekerle H., Linington C. Experimental autoimmune panencephalitis and uveoretinitis transferred to the Lewis rat by T lymphocytes specific for the S100 beta molecule, a calcium binding protein of astroglia. J Exp Med. 1994 Sep 1;180(3):817–829. doi: 10.1084/jem.180.3.817. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kornek B., Lassmann H. Axonal pathology in multiple sclerosis. A historical note. Brain Pathol. 1999 Oct;9(4):651–656. doi: 10.1111/j.1750-3639.1999.tb00547.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kramer R., Zhang Y., Gehrmann J., Gold R., Thoenen H., Wekerle H. Gene transfer through the blood-nerve barrier: NGF-engineered neuritogenic T lymphocytes attenuate experimental autoimmune neuritis. Nat Med. 1995 Nov;1(11):1162–1166. doi: 10.1038/nm1195-1162. [DOI] [PubMed] [Google Scholar]
  34. Lang Heather L. E., Jacobsen Helle, Ikemizu Shinji, Andersson Christina, Harlos Karl, Madsen Lars, Hjorth Peter, Sondergaard Leif, Svejgaard Arne, Wucherpfennig Kai. A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol. 2002 Sep 3;3(10):940–943. doi: 10.1038/ni835. [DOI] [PubMed] [Google Scholar]
  35. Linington C., Bradl M., Lassmann H., Brunner C., Vass K. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol. 1988 Mar;130(3):443–454. [PMC free article] [PubMed] [Google Scholar]
  36. Madsen L. S., Andersson E. C., Jansson L., krogsgaard M., Andersen C. B., Engberg J., Strominger J. L., Svejgaard A., Hjorth J. P., Holmdahl R. A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor. Nat Genet. 1999 Nov;23(3):343–347. doi: 10.1038/15525. [DOI] [PubMed] [Google Scholar]
  37. McCloskey Thomas W., Haridas Viraga, Pahwa Rajendra, Pahwa Savita. T cell receptor V beta repertoire of the antigen specific CD8 T lymphocyte subset of HIV infected children. AIDS. 2002 Jul 26;16(11):1459–1465. doi: 10.1097/00002030-200207260-00002. [DOI] [PubMed] [Google Scholar]
  38. Medana I., Martinic M. A., Wekerle H., Neumann H. Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am J Pathol. 2001 Sep;159(3):809–815. doi: 10.1016/S0002-9440(10)61755-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Miller A. D., Rosman G. J. Improved retroviral vectors for gene transfer and expression. Biotechniques. 1989 Oct;7(9):980-2, 984-6, 989-90. [PMC free article] [PubMed] [Google Scholar]
  40. Mycko Marcin P., Papoian Ruben, Boschert Ursula, Raine Cedric S., Selmaj Krzysztof W. cDNA microarray analysis in multiple sclerosis lesions: detection of genes associated with disease activity. Brain. 2003 May;126(Pt 5):1048–1057. doi: 10.1093/brain/awg107. [DOI] [PubMed] [Google Scholar]
  41. Neuhaus O., Farina C., Yassouridis A., Wiendl H., Then Bergh F., Dose T., Wekerle H., Hohlfeld R. Multiple sclerosis: comparison of copolymer-1- reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7452–7457. doi: 10.1073/pnas.97.13.7452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. PATERSON P. Y. Transfer of allergic encephalomyelitis in rats by means of lymph node cells. J Exp Med. 1960 Jan 1;111:119–136. doi: 10.1084/jem.111.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Pender M. P., Nguyen K. B., McCombe P. A., Kerr J. F. Apoptosis in the nervous system in experimental allergic encephalomyelitis. J Neurol Sci. 1991 Jul;104(1):81–87. doi: 10.1016/0022-510x(91)90219-w. [DOI] [PubMed] [Google Scholar]
  44. Pette M., Fujita K., Wilkinson D., Altmann D. M., Trowsdale J., Giegerich G., Hinkkanen A., Epplen J. T., Kappos L., Wekerle H. Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and healthy donors. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7968–7972. doi: 10.1073/pnas.87.20.7968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pittet M. J., Speiser D. E., Valmori D., Rimoldi D., Liénard D., Lejeune F., Cerottini J. C., Romero P. Ex vivo analysis of tumor antigen specific CD8+ T cell responses using MHC/peptide tetramers in cancer patients. Int Immunopharmacol. 2001 Jul;1(7):1235–1247. doi: 10.1016/s1567-5769(01)00048-0. [DOI] [PubMed] [Google Scholar]
  46. Raivich G., Jones L. L., Kloss C. U., Werner A., Neumann H., Kreutzberg G. W. Immune surveillance in the injured nervous system: T-lymphocytes invade the axotomized mouse facial motor nucleus and aggregate around sites of neuronal degeneration. J Neurosci. 1998 Aug 1;18(15):5804–5816. doi: 10.1523/JNEUROSCI.18-15-05804.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Readhead C., Schneider A., Griffiths I., Nave K. A. Premature arrest of myelin formation in transgenic mice with increased proteolipid protein gene dosage. Neuron. 1994 Mar;12(3):583–595. doi: 10.1016/0896-6273(94)90214-3. [DOI] [PubMed] [Google Scholar]
  48. Reddy Jayagopala, Bettelli Estelle, Nicholson Lindsay, Waldner Hanspeter, Jang Mei-Huei, Wucherpfennig Kai W., Kuchroo Vijay K. Detection of autoreactive myelin proteolipid protein 139-151-specific T cells by using MHC II (IAs) tetramers. J Immunol. 2003 Jan 15;170(2):870–877. doi: 10.4049/jimmunol.170.2.870. [DOI] [PubMed] [Google Scholar]
  49. Sato Yuriko, Sahara Hiroeki, Tsukahara Tomohide, Kondo Masako, Hirohashi Yoshihiko, Nabeta Yuki, Kawaguchi Satoshi, Ikeda Hideyuki, Torigoe Toshihiko, Ichimiya Shingo. Improved generation of HLA class I/peptide tetramers. J Immunol Methods. 2002 Dec 20;271(1-2):177–184. doi: 10.1016/s0022-1759(02)00329-0. [DOI] [PubMed] [Google Scholar]
  50. Schluesener H. J., Wekerle H. Autoaggressive T lymphocyte lines recognizing the encephalitogenic region of myelin basic protein: in vitro selection from unprimed rat T lymphocyte populations. J Immunol. 1985 Nov;135(5):3128–3133. [PubMed] [Google Scholar]
  51. Schmied M., Breitschopf H., Gold R., Zischler H., Rothe G., Wekerle H., Lassmann H. Apoptosis of T lymphocytes in experimental autoimmune encephalomyelitis. Evidence for programmed cell death as a mechanism to control inflammation in the brain. Am J Pathol. 1993 Aug;143(2):446–452. [PMC free article] [PubMed] [Google Scholar]
  52. Trapp B. D., Peterson J., Ransohoff R. M., Rudick R., Mörk S., Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998 Jan 29;338(5):278–285. doi: 10.1056/NEJM199801293380502. [DOI] [PubMed] [Google Scholar]
  53. Tuohy V. K., Yu M., Yin L., Kawczak J. A., Johnson J. M., Mathisen P. M., Weinstock-Guttman B., Kinkel R. P. The epitope spreading cascade during progression of experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol Rev. 1998 Aug;164:93–100. doi: 10.1111/j.1600-065x.1998.tb01211.x. [DOI] [PubMed] [Google Scholar]
  54. Vieira Pedro L., Heystek Heleen C., Wormmeester Jan, Wierenga Eddy A., Kapsenberg Martien L. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol. 2003 May 1;170(9):4483–4488. doi: 10.4049/jimmunol.170.9.4483. [DOI] [PubMed] [Google Scholar]
  55. Waxman Stephen G. Nitric oxide and the axonal death cascade. Ann Neurol. 2003 Feb;53(2):150–153. doi: 10.1002/ana.10397. [DOI] [PubMed] [Google Scholar]
  56. Wekerle H., Kojima K., Lannes-Vieira J., Lassmann H., Linington C. Animal models. Ann Neurol. 1994;36 (Suppl):S47–S53. doi: 10.1002/ana.410360714. [DOI] [PubMed] [Google Scholar]
  57. Whitney L. W., Ludwin S. K., McFarland H. F., Biddison W. E. Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. J Neuroimmunol. 2001 Dec 3;121(1-2):40–48. doi: 10.1016/s0165-5728(01)00438-6. [DOI] [PubMed] [Google Scholar]
  58. Wiendl Heinz, Malotka Joachim, Holzwarth Brigitte, Weltzien Hans-Ulrich, Wekerle Hartmut, Hohlfeld Reinhard, Dornmair Klaus. An autoreactive gamma delta TCR derived from a polymyositis lesion. J Immunol. 2002 Jul 1;169(1):515–521. doi: 10.4049/jimmunol.169.1.515. [DOI] [PubMed] [Google Scholar]
  59. Wucherpfennig K. W., Strominger J. L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell. 1995 Mar 10;80(5):695–705. doi: 10.1016/0092-8674(95)90348-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Yamamura T., Namikawa T., Endoh M., Kunishita T., Tabira T. Experimental allergic encephalomyelitis induced by proteolipid apoprotein in Lewis rats. J Neuroimmunol. 1986 Aug;12(2):143–153. doi: 10.1016/0165-5728(86)90027-5. [DOI] [PubMed] [Google Scholar]
  61. Young D. A., Lowe L. D., Booth S. S., Whitters M. J., Nicholson L., Kuchroo V. K., Collins M. IL-4, IL-10, IL-13, and TGF-beta from an altered peptide ligand-specific Th2 cell clone down-regulate adoptive transfer of experimental autoimmune encephalomyelitis. J Immunol. 2000 Apr 1;164(7):3563–3572. doi: 10.4049/jimmunol.164.7.3563. [DOI] [PubMed] [Google Scholar]
  62. Zhang J., Vandevyver C., Stinissen P., Raus J. In vivo clonotypic regulation of human myelin basic protein-reactive T cells by T cell vaccination. J Immunol. 1995 Dec 15;155(12):5868–5877. [PubMed] [Google Scholar]
  63. Ziemssen Tjalf, Kümpfel Tania, Klinkert Wolfgang E. F., Neuhaus Oliver, Hohlfeld Reinhard. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain. 2002 Nov;125(Pt 11):2381–2391. doi: 10.1093/brain/awf252. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES