Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2004 Jan;75(1):116–120.

Hippocampal MRI volumetry in cognitively discordant monozygotic twin pairs

T Jarvenpaa 1, M Laakso 1, R Rossi 1, M Koskenvuo 1, J Kaprio 1, I Raiha 1, T Kurki 1, M Laine 1, G Frisoni 1, J Rinne 1
PMCID: PMC1757472  PMID: 14707319

Abstract

Objective: To investigate whether hippocampal atrophy, a proxy for incipient Alzheimer's disease, can be detected in non-demented monozygotic co-twins of demented twins by using volumetric magnetic resonance imaging (MRI).

Methods: Seven pairs of monozygotic female twins discordant for cognitive function (mean (SD) age 75 (4) years), and 10 age and education matched healthy controls (seven women, three men; mean age 73 (3) years) were studied with volumetric MRI.

Results: The mean normalised right hippocampal volume was 31% lower (p = 0.002) in the demented twins, and 6% lower (p = 0.45) in the non-demented twins than in the controls. In the left hippocampus, the mean normalised volume was 36% lower (p<0.001) in the demented twins, and 9% lower (p = 0.13) in the non-demented twins than in the controls.

Conclusions: Significant hippocampal atrophy was detected in the demented twins compared with the controls. This is in line with previous imaging and pathological studies, with hippocampus showing the early changes in Alzheimer's disease. In the non-demented twins, only a minor, non-significant reduction was observed in the hippocampal volumes compared with the controls. This could reflect gene–environment interactions that have protected the non-demented twins longer than their demented co-twins and contributed to the relative preservation of their hippocampal volumes, or it could be a sign of preclinical Alzheimer's disease in the non-demented twins.

Full Text

The Full Text of this article is available as a PDF (251.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartley A. J., Jones D. W., Weinberger D. R. Genetic variability of human brain size and cortical gyral patterns. Brain. 1997 Feb;120(Pt 2):257–269. doi: 10.1093/brain/120.2.257. [DOI] [PubMed] [Google Scholar]
  2. Braak H., Braak E., Bohl J. Staging of Alzheimer-related cortical destruction. Eur Neurol. 1993;33(6):403–408. doi: 10.1159/000116984. [DOI] [PubMed] [Google Scholar]
  3. Braak H., Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–259. doi: 10.1007/BF00308809. [DOI] [PubMed] [Google Scholar]
  4. Breitner J. C., Welsh K. A., Gau B. A., McDonald W. M., Steffens D. C., Saunders A. M., Magruder K. M., Helms M. J., Plassman B. L., Folstein M. F. Alzheimer's disease in the National Academy of Sciences-National Research Council Registry of Aging Twin Veterans. III. Detection of cases, longitudinal results, and observations on twin concordance. Arch Neurol. 1995 Aug;52(8):763–771. doi: 10.1001/archneur.1995.00540320035011. [DOI] [PubMed] [Google Scholar]
  5. Carmelli D., DeCarli C., Swan G. E., Jack L. M., Reed T., Wolf P. A., Miller B. L. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke. 1998 Jun;29(6):1177–1181. doi: 10.1161/01.str.29.6.1177. [DOI] [PubMed] [Google Scholar]
  6. Cohen R. M., Small C., Lalonde F., Friz J., Sunderland T. Effect of apolipoprotein E genotype on hippocampal volume loss in aging healthy women. Neurology. 2001 Dec 26;57(12):2223–2228. doi: 10.1212/wnl.57.12.2223. [DOI] [PubMed] [Google Scholar]
  7. Convit A., De Leon M. J., Tarshish C., De Santi S., Tsui W., Rusinek H., George A. Specific hippocampal volume reductions in individuals at risk for Alzheimer's disease. Neurobiol Aging. 1997 Mar-Apr;18(2):131–138. doi: 10.1016/s0197-4580(97)00001-8. [DOI] [PubMed] [Google Scholar]
  8. Cook R. H., Schneck S. A., Clark D. B. Twins with Alzheimer's disease. Arch Neurol. 1981 May;38(5):300–301. doi: 10.1001/archneur.1981.00510050066011. [DOI] [PubMed] [Google Scholar]
  9. De Santi S., de Leon M. J., Rusinek H., Convit A., Tarshish C. Y., Roche A., Tsui W. H., Kandil E., Boppana M., Daisley K. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging. 2001 Jul-Aug;22(4):529–539. doi: 10.1016/s0197-4580(01)00230-5. [DOI] [PubMed] [Google Scholar]
  10. Deweer B., Lehéricy S., Pillon B., Baulac M., Chiras J., Marsault C., Agid Y., Dubois B. Memory disorders in probable Alzheimer's disease: the role of hippocampal atrophy as shown with MRI. J Neurol Neurosurg Psychiatry. 1995 May;58(5):590–597. doi: 10.1136/jnnp.58.5.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dickerson B. C., Goncharova I., Sullivan M. P., Forchetti C., Wilson R. S., Bennett D. A., Beckett L. A., deToledo-Morrell L. MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer's disease. Neurobiol Aging. 2001 Sep-Oct;22(5):747–754. doi: 10.1016/s0197-4580(01)00271-8. [DOI] [PubMed] [Google Scholar]
  12. Du A. T., Schuff N., Amend D., Laakso M. P., Hsu Y. Y., Jagust W. J., Yaffe K., Kramer J. H., Reed B., Norman D. Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease. J Neurol Neurosurg Psychiatry. 2001 Oct;71(4):441–447. doi: 10.1136/jnnp.71.4.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Folstein M. F., Folstein S. E., McHugh P. R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6. [DOI] [PubMed] [Google Scholar]
  14. Fox N. C., Crum W. R., Scahill R. I., Stevens J. M., Janssen J. C., Rossor M. N. Imaging of onset and progression of Alzheimer's disease with voxel-compression mapping of serial magnetic resonance images. Lancet. 2001 Jul 21;358(9277):201–205. doi: 10.1016/S0140-6736(01)05408-3. [DOI] [PubMed] [Google Scholar]
  15. Gatz M., Reynolds C., Nikolic J., Lowe B., Karel M., Pedersen N. An empirical test of telephone screening to identify potential dementia cases. Int Psychogeriatr. 1995 Fall;7(3):429–438. doi: 10.1017/s1041610295002171. [DOI] [PubMed] [Google Scholar]
  16. Geroldi C., Frisoni G. B., Beltramello A., Weiss C., Bianchetti A., Pizzolato G., Ferlin G., Trabucchi M. Magnetic resonance and single-photon emission tomography findings in a pair of twins discordant for Alzheimer's disease. J Neuroimaging. 1996 Apr;6(2):76–80. doi: 10.1111/jon19966276. [DOI] [PubMed] [Google Scholar]
  17. Jack C. R., Jr, Petersen R. C., Xu Y. C., O'Brien P. C., Smith G. E., Ivnik R. J., Boeve B. F., Waring S. C., Tangalos E. G., Kokmen E. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology. 1999 Apr 22;52(7):1397–1403. doi: 10.1212/wnl.52.7.1397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jack C. R., Jr, Petersen R. C., Xu Y. C., Waring S. C., O'Brien P. C., Tangalos E. G., Smith G. E., Ivnik R. J., Kokmen E. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology. 1997 Sep;49(3):786–794. doi: 10.1212/wnl.49.3.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jack C. R., Jr, Petersen R. C., Xu Y., O'Brien P. C., Smith G. E., Ivnik R. J., Boeve B. F., Tangalos E. G., Kokmen E. Rates of hippocampal atrophy correlate with change in clinical status in aging and AD. Neurology. 2000 Aug 22;55(4):484–489. doi: 10.1212/wnl.55.4.484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kaprio J., Sarna S., Koskenvuo M., Rantasalo I. The Finnish Twin Registry: formation and compilation, questionnaire study, zygosity determination procedures, and research program. Prog Clin Biol Res. 1978;24(Pt B):179–184. [PubMed] [Google Scholar]
  21. Kelley W. M., Ojemann J. G., Wetzel R. D., Derdeyn C. P., Moran C. J., Cross D. T., Dowling J. L., Miller J. W., Petersen S. E. Wada testing reveals frontal lateralization for the memorization of words and faces. J Cogn Neurosci. 2002 Jan 1;14(1):116–125. doi: 10.1162/089892902317205375. [DOI] [PubMed] [Google Scholar]
  22. Killiany R. J., Gomez-Isla T., Moss M., Kikinis R., Sandor T., Jolesz F., Tanzi R., Jones K., Hyman B. T., Albert M. S. Use of structural magnetic resonance imaging to predict who will get Alzheimer's disease. Ann Neurol. 2000 Apr;47(4):430–439. [PubMed] [Google Scholar]
  23. Knopman D. S., DeKosky S. T., Cummings J. L., Chui H., Corey-Bloom J., Relkin N., Small G. W., Miller B., Stevens J. C. Practice parameter: diagnosis of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001 May 8;56(9):1143–1153. doi: 10.1212/wnl.56.9.1143. [DOI] [PubMed] [Google Scholar]
  24. Krasuski J. S., Alexander G. E., Horwitz B., Daly E. M., Murphy D. G., Rapoport S. I., Schapiro M. B. Volumes of medial temporal lobe structures in patients with Alzheimer's disease and mild cognitive impairment (and in healthy controls). Biol Psychiatry. 1998 Jan 1;43(1):60–68. doi: 10.1016/s0006-3223(97)00013-9. [DOI] [PubMed] [Google Scholar]
  25. Krasuski Jack S., Alexander Gene E., Horwitz Barry, Rapoport Stanley I., Schapiro Mark B. Relation of medial temporal lobe volumes to age and memory function in nondemented adults with Down's syndrome: implications for the prodromal phase of Alzheimer's disease. Am J Psychiatry. 2002 Jan;159(1):74–81. doi: 10.1176/appi.ajp.159.1.74. [DOI] [PubMed] [Google Scholar]
  26. Laakso M. P., Soininen H., Partanen K., Helkala E. L., Hartikainen P., Vainio P., Hallikainen M., Hänninen T., Riekkinen P. J., Sr Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer's disease: correlation with memory functions. J Neural Transm Park Dis Dement Sect. 1995;9(1):73–86. doi: 10.1007/BF02252964. [DOI] [PubMed] [Google Scholar]
  27. Laakso M. P., Soininen H., Partanen K., Lehtovirta M., Hallikainen M., Hänninen T., Helkala E. L., Vainio P., Riekkinen P. J., Sr MRI of the hippocampus in Alzheimer's disease: sensitivity, specificity, and analysis of the incorrectly classified subjects. Neurobiol Aging. 1998 Jan-Feb;19(1):23–31. doi: 10.1016/s0197-4580(98)00006-2. [DOI] [PubMed] [Google Scholar]
  28. Lohmann G., von Cramon D. Y., Steinmetz H. Sulcal variability of twins. Cereb Cortex. 1999 Oct-Nov;9(7):754–763. doi: 10.1093/cercor/9.7.754. [DOI] [PubMed] [Google Scholar]
  29. Luxenberg J. S., May C., Haxby J. V., Grady C., Moore A., Berg G., White B. J., Robinette D., Rapoport S. I. Cerebral metabolism, anatomy, and cognition in monozygotic twins discordant for dementia of the Alzheimer type. J Neurol Neurosurg Psychiatry. 1987 Mar;50(3):333–340. doi: 10.1136/jnnp.50.3.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology. 1984 Jul;34(7):939–944. doi: 10.1212/wnl.34.7.939. [DOI] [PubMed] [Google Scholar]
  31. Nee L. E., Eldridge R., Sunderland T., Thomas C. B., Katz D., Thompson K. E., Weingartner H., Weiss H., Julian C., Cohen R. Dementia of the Alzheimer type: clinical and family study of 22 twin pairs. Neurology. 1987 Mar;37(3):359–363. doi: 10.1212/wnl.37.3.359. [DOI] [PubMed] [Google Scholar]
  32. Oppenheim J. S., Skerry J. E., Tramo M. J., Gazzaniga M. S. Magnetic resonance imaging morphology of the corpus callosum in monozygotic twins. Ann Neurol. 1989 Jul;26(1):100–104. doi: 10.1002/ana.410260117. [DOI] [PubMed] [Google Scholar]
  33. Petersen R. C., Jack C. R., Jr, Xu Y. C., Waring S. C., O'Brien P. C., Smith G. E., Ivnik R. J., Tangalos E. G., Boeve B. F., Kokmen E. Memory and MRI-based hippocampal volumes in aging and AD. Neurology. 2000 Feb 8;54(3):581–587. doi: 10.1212/wnl.54.3.581. [DOI] [PubMed] [Google Scholar]
  34. Petersen R. C., Stevens J. C., Ganguli M., Tangalos E. G., Cummings J. L., DeKosky S. T. Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2001 May 8;56(9):1133–1142. doi: 10.1212/wnl.56.9.1133. [DOI] [PubMed] [Google Scholar]
  35. Pfefferbaum A., Sullivan E. V., Swan G. E., Carmelli D. Brain structure in men remains highly heritable in the seventh and eighth decades of life. Neurobiol Aging. 2000 Jan-Feb;21(1):63–74. doi: 10.1016/s0197-4580(00)00086-5. [DOI] [PubMed] [Google Scholar]
  36. Raiha I., Kaprio J., Koskenvuo M., Rajala T., Sourander L. Alzheimer's disease in Finnish twins. Lancet. 1996 Mar 2;347(9001):573–578. doi: 10.1016/s0140-6736(96)91272-6. [DOI] [PubMed] [Google Scholar]
  37. Small G. W., Leuchter A. F., Mandelkern M. A., La Rue A., Okonek A., Lufkin R. B., Jarvik L. F., Matsuyama S. S., Bondareff W. Clinical, neuroimaging, and environmental risk differences in monozygotic female twins appearing discordant for dementia of the Alzheimer type. Arch Neurol. 1993 Feb;50(2):209–219. doi: 10.1001/archneur.1993.00540020085022. [DOI] [PubMed] [Google Scholar]
  38. Sullivan E. V., Pfefferbaum A., Swan G. E., Carmelli D. Heritability of hippocampal size in elderly twin men: equivalent influence from genes and environment. Hippocampus. 2001;11(6):754–762. doi: 10.1002/hipo.1091. [DOI] [PubMed] [Google Scholar]
  39. Tramo M. J., Loftus W. C., Stukel T. A., Green R. L., Weaver J. B., Gazzaniga M. S. Brain size, head size, and intelligence quotient in monozygotic twins. Neurology. 1998 May;50(5):1246–1252. doi: 10.1212/wnl.50.5.1246. [DOI] [PubMed] [Google Scholar]
  40. Welsh K. A., Butters N., Mohs R. C., Beekly D., Edland S., Fillenbaum G., Heyman A. The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part V. A normative study of the neuropsychological battery. Neurology. 1994 Apr;44(4):609–614. doi: 10.1212/wnl.44.4.609. [DOI] [PubMed] [Google Scholar]
  41. White Tonya, Andreasen Nancy C., Nopoulos Peggy. Brain volumes and surface morphology in monozygotic twins. Cereb Cortex. 2002 May;12(5):486–493. doi: 10.1093/cercor/12.5.486. [DOI] [PubMed] [Google Scholar]
  42. Xu Y., Jack C. R., Jr, O'Brien P. C., Kokmen E., Smith G. E., Ivnik R. J., Boeve B. F., Tangalos R. G., Petersen R. C. Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology. 2000 May 9;54(9):1760–1767. doi: 10.1212/wnl.54.9.1760. [DOI] [PubMed] [Google Scholar]
  43. Ylikoski R., Ylikoski A., Erkinjuntti T., Sulkava R., Keskivaara P., Raininko R., Tilvis R. Differences in neuropsychological functioning associated with age, education, neurological status, and magnetic resonance imaging findings in neurologically healthy elderly individuals. Appl Neuropsychol. 1998;5(1):1–14. doi: 10.1207/s15324826an0501_1. [DOI] [PubMed] [Google Scholar]
  44. Zubenko G. S., Ferrell R. E. Monozygotic twins concordant for probable Alzheimer disease and increased platelet membrane fluidity. Am J Med Genet. 1988 Feb;29(2):431–436. doi: 10.1002/ajmg.1320290227. [DOI] [PubMed] [Google Scholar]
  45. de Leon M. J., Convit A., DeSanti S., Bobinski M., George A. E., Wisniewski H. M., Rusinek H., Carroll R., Saint Louis L. A. Contribution of structural neuroimaging to the early diagnosis of Alzheimer's disease. Int Psychogeriatr. 1997;9 (Suppl 1):183–252. doi: 10.1017/s1041610297004900. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES