Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2004 Jan;75(1):98–102.

Persistence of pain induced by startle and forehead cooling after sympathetic blockade in patients with complex regional pain syndrome

P Drummond 1, P Finch 1
PMCID: PMC1757489  PMID: 14707316

Abstract

Background: Stimuli arousing sympathetic activity can increase ratings of clinical pain in patients with complex regional pain syndrome (CRPS).

Objective: To determine whether the increase in pain is mediated by peripheral sympathetic activity.

Methods: The effect of sympathetic ganglion blockade on pain evoked by a startle stimulus and cooling the forehead was investigated in 36 CRPS patients.

Results: Loss of vasoconstrictor reflexes and warming of the limb indicated that sympathetic blockade was effective in 26 cases. Before sympathetic blockade, pain increased in 12 of these 26 patients when they were startled. Pain increased in seven of the 12 patients and in another five cases when their forehead was cooled. As expected, pain that increased during sympathetic arousal generally subsided in patients with signs of sympathetic blockade. However, pain still increased in three of 12 of patients after the startle stimulus and in six of 12 of patients during forehead cooling, despite indisputable sympathetic blockade.

Conclusions: These findings suggest that stimuli arousing sympathetic activity act by a central process to exacerbate pain in some patients, independent of the peripheral sympathetic nervous system. This may account for the lack of effect of peripheral sympathetic blockade on pain in some CRPS patients.

Full Text

The Full Text of this article is available as a PDF (170.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ali Z., Raja S. N., Wesselmann U., Fuchs P. N., Meyer R. A., Campbell J. N. Intradermal injection of norepinephrine evokes pain in patients with sympathetically maintained pain. Pain. 2000 Nov;88(2):161–168. doi: 10.1016/S0304-3959(00)00327-4. [DOI] [PubMed] [Google Scholar]
  2. Ali Z., Ringkamp M., Hartke T. V., Chien H. F., Flavahan N. A., Campbell J. N., Meyer R. A. Uninjured C-fiber nociceptors develop spontaneous activity and alpha-adrenergic sensitivity following L6 spinal nerve ligation in monkey. J Neurophysiol. 1999 Feb;81(2):455–466. doi: 10.1152/jn.1999.81.2.455. [DOI] [PubMed] [Google Scholar]
  3. Bandler R., Shipley M. T. Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci. 1994 Sep;17(9):379–389. doi: 10.1016/0166-2236(94)90047-7. [DOI] [PubMed] [Google Scholar]
  4. Baron R., Levine J. D., Fields H. L. Causalgia and reflex sympathetic dystrophy: does the sympathetic nervous system contribute to the generation of pain? Muscle Nerve. 1999 Jun;22(6):678–695. doi: 10.1002/(sici)1097-4598(199906)22:6<678::aid-mus4>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  5. Baron R., Schattschneider J., Binder A., Siebrecht D., Wasner G. Relation between sympathetic vasoconstrictor activity and pain and hyperalgesia in complex regional pain syndromes: a case-control study. Lancet. 2002 May 11;359(9318):1655–1660. doi: 10.1016/S0140-6736(02)08589-6. [DOI] [PubMed] [Google Scholar]
  6. Basbaum A. I., Fields H. L. Endogenous pain control mechanisms: review and hypothesis. Ann Neurol. 1978 Nov;4(5):451–462. doi: 10.1002/ana.410040511. [DOI] [PubMed] [Google Scholar]
  7. Bruehl S., McCubbin J. A., Harden R. N. Theoretical review: altered pain regulatory systems in chronic pain. Neurosci Biobehav Rev. 1999;23(6):877–890. doi: 10.1016/s0149-7634(99)00039-1. [DOI] [PubMed] [Google Scholar]
  8. Chabal C., Jacobson L., Russell L. C., Burchiel K. J. Pain response to perineuromal injection of normal saline, epinephrine, and lidocaine in humans. Pain. 1992 Apr;49(1):9–12. doi: 10.1016/0304-3959(92)90181-A. [DOI] [PubMed] [Google Scholar]
  9. Choi B., Rowbotham M. C. Effect of adrenergic receptor activation on post-herpetic neuralgia pain and sensory disturbances. Pain. 1997 Jan;69(1-2):55–63. doi: 10.1016/s0304-3959(96)03245-9. [DOI] [PubMed] [Google Scholar]
  10. Drummond P. D., Finch P. M., Skipworth S., Blockey P. Pain increases during sympathetic arousal in patients with complex regional pain syndrome. Neurology. 2001 Oct 9;57(7):1296–1303. doi: 10.1212/wnl.57.7.1296. [DOI] [PubMed] [Google Scholar]
  11. Drummond P. D. Mechanism of complex regional pain syndrome: no longer excessive sympathetic outflow? Lancet. 2001 Jul 21;358(9277):168–170. doi: 10.1016/S0140-6736(01)05400-9. [DOI] [PubMed] [Google Scholar]
  12. Finnerup N. B., Johannesen I. L., Fuglsang-Frederiksen A., Bach F. W., Jensen T. S. Sensory function in spinal cord injury patients with and without central pain. Brain. 2003 Jan;126(Pt 1):57–70. doi: 10.1093/brain/awg007. [DOI] [PubMed] [Google Scholar]
  13. Fukumoto M., Ushida T., Zinchuk V. S., Yamamoto H., Yoshida S. Contralateral thalamic perfusion in patients with reflex sympathetic dystrophy syndrome. Lancet. 1999 Nov 20;354(9192):1790–1791. doi: 10.1016/S0140-6736(99)03746-0. [DOI] [PubMed] [Google Scholar]
  14. Hjemdahl P., Fagius J., Freyschuss U., Wallin B. G., Daleskog M., Bohlin G., Perski A. Muscle sympathetic activity and norepinephrine release during mental challenge in humans. Am J Physiol. 1989 Nov;257(5 Pt 1):E654–E664. doi: 10.1152/ajpendo.1989.257.5.E654. [DOI] [PubMed] [Google Scholar]
  15. Hu S. J., Zhu J. Sympathetic facilitation of sustained discharges of polymodal nociceptors. Pain. 1989 Jul;38(1):85–90. doi: 10.1016/0304-3959(89)90077-8. [DOI] [PubMed] [Google Scholar]
  16. Jänig Wilfrid, Baron Ralf. Complex regional pain syndrome is a disease of the central nervous system. Clin Auton Res. 2002 Jun;12(3):150–164. doi: 10.1007/s10286-002-0022-1. [DOI] [PubMed] [Google Scholar]
  17. Katz J. Psychophysical correlates of phantom limb experience. J Neurol Neurosurg Psychiatry. 1992 Sep;55(9):811–821. doi: 10.1136/jnnp.55.9.811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kim S. H., Na H. S., Sheen K., Chung J. M. Effects of sympathectomy on a rat model of peripheral neuropathy. Pain. 1993 Oct;55(1):85–92. doi: 10.1016/0304-3959(93)90187-T. [DOI] [PubMed] [Google Scholar]
  19. Lykken D. T., Venables P. H. Direct measurement of skin conductance: a proposal for standardization. Psychophysiology. 1971 Sep;8(5):656–672. doi: 10.1111/j.1469-8986.1971.tb00501.x. [DOI] [PubMed] [Google Scholar]
  20. Price D. D., Long S., Wilsey B., Rafii A. Analysis of peak magnitude and duration of analgesia produced by local anesthetics injected into sympathetic ganglia of complex regional pain syndrome patients. Clin J Pain. 1998 Sep;14(3):216–226. doi: 10.1097/00002508-199809000-00008. [DOI] [PubMed] [Google Scholar]
  21. Sato J., Perl E. R. Adrenergic excitation of cutaneous pain receptors induced by peripheral nerve injury. Science. 1991 Mar 29;251(5001):1608–1610. doi: 10.1126/science.2011742. [DOI] [PubMed] [Google Scholar]
  22. Sato J., Suzuki S., Iseki T., Kumazawa T. Adrenergic excitation of cutaneous nociceptors in chronically inflamed rats. Neurosci Lett. 1993 Dec 24;164(1-2):225–228. doi: 10.1016/0304-3940(93)90897-t. [DOI] [PubMed] [Google Scholar]
  23. Schürmann M., Gradl G., Wizgal I., Tutic M., Moser C., Azad S., Beyer A. Clinical and physiologic evaluation of stellate ganglion blockade for complex regional pain syndrome type I. Clin J Pain. 2001 Mar;17(1):94–100. doi: 10.1097/00002508-200103000-00012. [DOI] [PubMed] [Google Scholar]
  24. Shir Y., Seltzer Z. Effects of sympathectomy in a model of causalgiform pain produced by partial sciatic nerve injury in rats. Pain. 1991 Jun;45(3):309–320. doi: 10.1016/0304-3959(91)90056-4. [DOI] [PubMed] [Google Scholar]
  25. Stevens R. A., Stotz A., Kao T. C., Powar M., Burgess S., Kleinman B. The relative increase in skin temperature after stellate ganglion block is predictive of a complete sympathectomy of the hand. Reg Anesth Pain Med. 1998 May-Jun;23(3):266–270. doi: 10.1016/s1098-7339(98)90053-0. [DOI] [PubMed] [Google Scholar]
  26. Torebjörk E., Wahren L., Wallin G., Hallin R., Koltzenburg M. Noradrenaline-evoked pain in neuralgia. Pain. 1995 Oct;63(1):11–20. doi: 10.1016/0304-3959(95)00140-N. [DOI] [PubMed] [Google Scholar]
  27. Treede R. D., Davis K. D., Campbell J. N., Raja S. N. The plasticity of cutaneous hyperalgesia during sympathetic ganglion blockade in patients with neuropathic pain. Brain. 1992 Apr;115(Pt 2):607–621. doi: 10.1093/brain/115.2.607. [DOI] [PubMed] [Google Scholar]
  28. Van Bockstaele E. J., Aston-Jones G. Integration in the ventral medulla and coordination of sympathetic, pain and arousal functions. Clin Exp Hypertens. 1995 Jan-Feb;17(1-2):153–165. doi: 10.3109/10641969509087062. [DOI] [PubMed] [Google Scholar]
  29. Van Bockstaele E. J., Bajic D., Proudfit H., Valentino R. J. Topographic architecture of stress-related pathways targeting the noradrenergic locus coeruleus. Physiol Behav. 2001 Jun;73(3):273–283. doi: 10.1016/s0031-9384(01)00448-6. [DOI] [PubMed] [Google Scholar]
  30. Victor R. G., Leimbach W. N., Jr, Seals D. R., Wallin B. G., Mark A. L. Effects of the cold pressor test on muscle sympathetic nerve activity in humans. Hypertension. 1987 May;9(5):429–436. doi: 10.1161/01.hyp.9.5.429. [DOI] [PubMed] [Google Scholar]
  31. Zhang C., Guo Y. Q., Qiao J. T., Dafny N. Locus coeruleus modulates thalamic nociceptive responses via adrenoceptors. Brain Res. 1998 Feb 16;784(1-2):116–122. doi: 10.1016/s0006-8993(97)01197-9. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES