Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Dec;65(12):5222–5230. doi: 10.1128/iai.65.12.5222-5230.1997

Identification and characterization of a K88- and CS31A-like operon of a rabbit enteropathogenic Escherichia coli strain which encodes fimbriae involved in the colonization of rabbit intestine.

L M Adams 1, C P Simmons 1, L Rezmann 1, R A Strugnell 1, R M Robins-Browne 1
PMCID: PMC175752  PMID: 9393819

Abstract

Initiation of attaching-effacing lesions, which characterize infections with rabbit enteropathogenic Escherichia coli (REPEC), requires bacteria to adhere to the intestinal epithelium. This adherence is reflected in vitro by the affinity of these E. coli strains for various types of eukaryotic cells. TnphoA mutants of REPEC 83/39 (O15:H-) which had lost the ability to adhere to HEp-2 epithelial cells, guinea pig ileal brush borders, and mouse erythrocytes were generated. DNA sequencing of the region surrounding the inactivating transposon insertions within a 95-kb plasmid, designated pRAP for REPEC adherence plasmid, revealed extensive homology between that region and the structural genes of enterotoxigenic E. coli operons encoding the K88 and CS31A fimbrial adhesins and the genes for the afr2 adhesin from REPEC B10 (O103:H2). Seven genes of the ral operon (for REPEC adherence locus), including three putative minor fimbrial subunit genes (ralC, ralF, and ralH), a major fimbrial subunit gene (ralG), a gene of unknown function (ralI), and genes for two fimbrial subunit chaperones (ralD and ralE), were sequenced. When inoculated perorally into weanling rabbits, a mutant with a TnphoA insertion in the ralE gene showed a 10-fold reduction in colonizing ability, with only 1 of 10 rabbits excreting bacteria compared to all 5 of those infected with the wild-type parent strain (P = 0.002). The severity of the diarrheal illness caused by the mutant strain was also reduced. Western blotting of surface protein extracts of strain 83/39 with hyperimmune anti-83/39 antiserum, adsorbed with the ralE mutant, revealed a 32-kDa protein which was absent from protein extracts of two nonadherent mutants. The adsorbed antiserum also bound to the surface of strain 83/39 but not to nonadherent mutants, as detected by immunogold labeling. These results indicate that the ral operon of REPEC 83/39 contains genes necessary for the biosynthesis of fine fimbriae which are responsible for in vitro adherence of the bacteria and play a role in their colonization of, and hence virulence for, rabbits. The putative major fimbrial subunit is a protein with an observed molecular size of approximately 32 kDa which, when assembled, appears to form a capsule of fimbriae surrounding the bacterium similar to that described for CS31A.

Full Text

The Full Text of this article is available as a PDF (866.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bakker D., Vader C. E., Roosendaal B., Mooi F. R., Oudega B., de Graaf F. K. Structure and function of periplasmic chaperone-like proteins involved in the biosynthesis of K88 and K99 fimbriae in enterotoxigenic Escherichia coli. Mol Microbiol. 1991 Apr;5(4):875–886. doi: 10.1111/j.1365-2958.1991.tb00761.x. [DOI] [PubMed] [Google Scholar]
  2. Bakker D., Willemsen P. T., Simons L. H., van Zijderveld F. G., de Graaf F. K. Characterization of the antigenic and adhesive properties of FaeG, the major subunit of K88 fimbriae. Mol Microbiol. 1992 Jan;6(2):247–255. doi: 10.1111/j.1365-2958.1992.tb02006.x. [DOI] [PubMed] [Google Scholar]
  3. Bakker D., Willemsen P. T., Willems R. H., Huisman T. T., Mooi F. R., Oudega B., Stegehuis F., de Graaf F. K. Identification of minor fimbrial subunits involved in biosynthesis of K88 fimbriae. J Bacteriol. 1992 Oct;174(20):6350–6358. doi: 10.1128/jb.174.20.6350-6358.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Benjelloun-Touimi Z., Sansonetti P. J., Parsot C. SepA, the major extracellular protein of Shigella flexneri: autonomous secretion and involvement in tissue invasion. Mol Microbiol. 1995 Jul;17(1):123–135. doi: 10.1111/j.1365-2958.1995.mmi_17010123.x. [DOI] [PubMed] [Google Scholar]
  5. Cantey J. R., Blake R. K. Diarrhea due to Escherichia coli in the rabbit: a novel mechanism. J Infect Dis. 1977 Mar;135(3):454–462. doi: 10.1093/infdis/135.3.454. [DOI] [PubMed] [Google Scholar]
  6. Cheney C. P., Formal S. B., Schad P. A., Boedeker E. C. Genetic transfer of a mucosal adherence factor (R1) from an enteropathogenic Escherichia coli strain into a Shigella flexneri strain and the phenotypic suppression of this adherence factor. J Infect Dis. 1983 Apr;147(4):711–723. doi: 10.1093/infdis/147.4.711. [DOI] [PubMed] [Google Scholar]
  7. Donnenberg M. S., Kaper J. B., Finlay B. B. Interactions between enteropathogenic Escherichia coli and host epithelial cells. Trends Microbiol. 1997 Mar;5(3):109–114. doi: 10.1016/S0966-842X(97)01000-7. [DOI] [PubMed] [Google Scholar]
  8. Fiederling F., Boury M., Petit C., Milon A. Adhesive factor/rabbit 2, a new fimbrial adhesin and a virulence factor from Escherichia coli O103, a serogroup enteropathogenic for rabbits. Infect Immun. 1997 Feb;65(2):847–851. doi: 10.1128/iai.65.2.847-851.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Girardeau J. P., Der Vartanian M., Ollier J. L., Contrepois M. CS31A, a new K88-related fimbrial antigen on bovine enterotoxigenic and septicemic Escherichia coli strains. Infect Immun. 1988 Aug;56(8):2180–2188. doi: 10.1128/iai.56.8.2180-2188.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Girón J. A., Ho A. S., Schoolnik G. K. An inducible bundle-forming pilus of enteropathogenic Escherichia coli. Science. 1991 Nov 1;254(5032):710–713. doi: 10.1126/science.1683004. [DOI] [PubMed] [Google Scholar]
  11. Guinée P. A., Jansen W. H. Behavior of Escherichia coli K antigens K88ab, K88ac, and K88ad in immunoelectrophoresis, double diffusion, and hemagglutination. Infect Immun. 1979 Mar;23(3):700–705. doi: 10.1128/iai.23.3.700-705.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hanahan D. Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983 Jun 5;166(4):557–580. doi: 10.1016/s0022-2836(83)80284-8. [DOI] [PubMed] [Google Scholar]
  13. Huisman T. T., de Graaf F. K. Negative control of fae (K88) expression by the 'global' regulator Lrp is modulated by the 'local' regulator FaeA and affected by DNA methylation. Mol Microbiol. 1995 Jun;16(5):943–953. doi: 10.1111/j.1365-2958.1995.tb02320.x. [DOI] [PubMed] [Google Scholar]
  14. Jacobs A. A., Roosendaal B., van Breemen J. F., de Graaf F. K. Role of phenylalanine 150 in the receptor-binding domain of the K88 fibrillar subunit. J Bacteriol. 1987 Nov;169(11):4907–4911. doi: 10.1128/jb.169.11.4907-4911.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Levine M. M., Nataro J. P., Karch H., Baldini M. M., Kaper J. B., Black R. E., Clements M. L., O'Brien A. D. The diarrheal response of humans to some classic serotypes of enteropathogenic Escherichia coli is dependent on a plasmid encoding an enteroadhesiveness factor. J Infect Dis. 1985 Sep;152(3):550–559. doi: 10.1093/infdis/152.3.550. [DOI] [PubMed] [Google Scholar]
  17. Martin C. The clp (CS31A) operon is negatively controlled by Lrp, ClpB, and L-alanine at the transcriptional level. Mol Microbiol. 1996 Jul;21(2):281–292. doi: 10.1046/j.1365-2958.1996.00651.x. [DOI] [PubMed] [Google Scholar]
  18. Milon A., Esslinger J., Camguilhem R. Adhesion of Escherichia coli strains isolated from diarrheic weaned rabbits to intestinal villi and HeLa cells. Infect Immun. 1990 Aug;58(8):2690–2695. doi: 10.1128/iai.58.8.2690-2695.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mooi F. R., Claassen I., Bakker D., Kuipers H., de Graaf F. K. Regulation and structure of an Escherichia coli gene coding for an outer membrane protein involved in export of K88ab fimbrial subunits. Nucleic Acids Res. 1986 Mar 25;14(6):2443–2457. doi: 10.1093/nar/14.6.2443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mooi F. R., Harms N., Bakker D., de Graaf F. K. Organization and expression of genes involved in the production of the K88ab antigen. Infect Immun. 1981 Jun;32(3):1155–1163. doi: 10.1128/iai.32.3.1155-1163.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mooi F. R., Wouters C., Wijfjes A., de Graaf F. K. Construction and characterization of mutants impaired in the biosynthesis of the K88ab antigen. J Bacteriol. 1982 May;150(2):512–521. doi: 10.1128/jb.150.2.512-521.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mooi F. R., van Buuren M., Koopman G., Roosendaal B., de Graaf F. K. K88ab gene of Escherichia coli encodes a fimbria-like protein distinct from the K88ab fimbrial adhesin. J Bacteriol. 1984 Aug;159(2):482–487. doi: 10.1128/jb.159.2.482-487.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moon H. W., Whipp S. C., Argenzio R. A., Levine M. M., Giannella R. A. Attaching and effacing activities of rabbit and human enteropathogenic Escherichia coli in pig and rabbit intestines. Infect Immun. 1983 Sep;41(3):1340–1351. doi: 10.1128/iai.41.3.1340-1351.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. ORSKOV I., ORSKOV F., SOJKA W. J., WITTIG W. K ANTIGENS K88AB(L) AND K88AC(L) IN E. COLI. A NEW O ANTIGEN: 0147 AND A NEW K ANTIGEN: K89(B). Acta Pathol Microbiol Scand. 1964;62:439–447. doi: 10.1111/apm.1964.62.3.439. [DOI] [PubMed] [Google Scholar]
  25. Oudega B., de Graaf M., de Boer L., Bakker D., Vader C. E., Mooi F. R., de Graaf F. K. Detection and identification of FaeC as a minor component of K88 fibrillae of Escherichia coli. Mol Microbiol. 1989 May;3(5):645–652. doi: 10.1111/j.1365-2958.1989.tb00212.x. [DOI] [PubMed] [Google Scholar]
  26. Peeters J. E., Pohl P., Okerman L., Devriese L. A. Pathogenic properties of Escherichia coli strains isolated from diarrheic commercial rabbits. J Clin Microbiol. 1984 Jul;20(1):34–39. doi: 10.1128/jcm.20.1.34-39.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Pillien F., Chalareng C., Boury M., Tasca C., de Rycke J., Milon A. Role of Adhesive Factor/Rabbit 2 in experimental enteropathogenic Escherichia coli O103 diarrhea of weaned rabbit. Vet Microbiol. 1996 May;50(1-2):105–115. doi: 10.1016/0378-1135(96)00012-0. [DOI] [PubMed] [Google Scholar]
  28. Pohl P. H., Peeters J. E., Jacquemin E. R., Lintermans P. F., Mainil J. G. Identification of eae sequences in enteropathogenic Escherichia coli strains from rabbits. Infect Immun. 1993 May;61(5):2203–2206. doi: 10.1128/iai.61.5.2203-2206.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Provence D. L., Curtiss R., 3rd Isolation and characterization of a gene involved in hemagglutination by an avian pathogenic Escherichia coli strain. Infect Immun. 1994 Apr;62(4):1369–1380. doi: 10.1128/iai.62.4.1369-1380.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Robins-Browne R. M., Bennett-Wood V. Quantitative assessment of the ability of Escherichia coli to invade cultured animal cells. Microb Pathog. 1992 Feb;12(2):159–164. doi: 10.1016/0882-4010(92)90119-9. [DOI] [PubMed] [Google Scholar]
  31. Robins-Browne R. M., Tokhi A. M., Adams L. M., Bennett-Wood V. Host specificity of enteropathogenic Escherichia coli from rabbits: lack of correlation between adherence in vitro and pathogenicity for laboratory animals. Infect Immun. 1994 Aug;62(8):3329–3336. doi: 10.1128/iai.62.8.3329-3336.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Robins-Browne R. M., Tokhi A. M., Adams L. M., Bennett-Wood V., Moisidis A. V., Krejany E. O., O'Gorman L. E. Adherence characteristics of attaching and effacing strains of Escherichia coli from rabbits. Infect Immun. 1994 May;62(5):1584–1592. doi: 10.1128/iai.62.5.1584-1592.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Robins-Browne R. M. Traditional enteropathogenic Escherichia coli of infantile diarrhea. Rev Infect Dis. 1987 Jan-Feb;9(1):28–53. doi: 10.1093/clinids/9.1.28. [DOI] [PubMed] [Google Scholar]
  34. Rutter J. M., Jones G. W. Protection against enteric disease caused by Escherichia coli--a model for vaccination with a virulence determinant? Nature. 1973 Apr 20;242(5399):531–532. doi: 10.1038/242531a0. [DOI] [PubMed] [Google Scholar]
  35. Scaletsky I. C., Silva M. L., Trabulsi L. R. Distinctive patterns of adherence of enteropathogenic Escherichia coli to HeLa cells. Infect Immun. 1984 Aug;45(2):534–536. doi: 10.1128/iai.45.2.534-536.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Shipley P. L., Dougan G., Falkow S. Identification and cloning of the genetic determinant that encodes for the K88ac adherence antigen. J Bacteriol. 1981 Feb;145(2):920–925. doi: 10.1128/jb.145.2.920-925.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Stein M., Kenny B., Stein M. A., Finlay B. B. Characterization of EspC, a 110-kilodalton protein secreted by enteropathogenic Escherichia coli which is homologous to members of the immunoglobulin A protease-like family of secreted proteins. J Bacteriol. 1996 Nov;178(22):6546–6554. doi: 10.1128/jb.178.22.6546-6554.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Taylor R. K., Manoil C., Mekalanos J. J. Broad-host-range vectors for delivery of TnphoA: use in genetic analysis of secreted virulence determinants of Vibrio cholerae. J Bacteriol. 1989 Apr;171(4):1870–1878. doi: 10.1128/jb.171.4.1870-1878.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tzipori S., Robins-Browne R. M., Gonis G., Hayes J., Withers M., McCartney E. Enteropathogenic Escherichia coli enteritis: evaluation of the gnotobiotic piglet as a model of human infection. Gut. 1985 Jun;26(6):570–578. doi: 10.1136/gut.26.6.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Valent Q. A., Zaal J., de Graaf F. K., Oudega B. Subcellular localization and topology of the K88 usher FaeD in Escherichia coli. Mol Microbiol. 1995 Jun;16(6):1243–1257. doi: 10.1111/j.1365-2958.1995.tb02346.x. [DOI] [PubMed] [Google Scholar]
  42. Vial P. A., Mathewson J. J., DuPont H. L., Guers L., Levine M. M. Comparison of two assay methods for patterns of adherence to HEp-2 cells of Escherichia coli from patients with diarrhea. J Clin Microbiol. 1990 May;28(5):882–885. doi: 10.1128/jcm.28.5.882-885.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wolf M. K., Andrews G. P., Fritz D. L., Sjogren R. W., Jr, Boedeker E. C. Characterization of the plasmid from Escherichia coli RDEC-1 that mediates expression of adhesin AF/R1 and evidence that AF/R1 pili promote but are not essential for enteropathogenic disease. Infect Immun. 1988 Aug;56(8):1846–1857. doi: 10.1128/iai.56.8.1846-1857.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. von Heijne G. Patterns of amino acids near signal-sequence cleavage sites. Eur J Biochem. 1983 Jun 1;133(1):17–21. doi: 10.1111/j.1432-1033.1983.tb07424.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES