Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 1998 May;55(5):333–339. doi: 10.1136/oem.55.5.333

Residential wire codes: reproducibility and relation with measured magnetic fields

R E Tarone, W T Kaune, M S Linet, E E Hatch, R A Kleinerman, L L Robison, J D Boice, S Wacholder
PMCID: PMC1757581  PMID: 9764111

Abstract

OBJECTIVES: To investigate the reproducibility of wire codes to characterise residential power line configurations and to determine the extent to which wire codes provide a proxy measure of residential magnetic field strength in a case-control study of childhood leukaemia conducted in nine states within the United States. METHODS: Misclassification of wire codes was assessed with independent measurements by two technicians for 187 residences. The association between categories of wire code and measured level of magnetic field was evaluated in 858 residences with both a wire code measurement and a 24 hour measurement of the magnetic field in the bedroom. The strength of the association between category of wire code and risk of leukaemia was examined in two regions with different average levels of magnetic field in homes with high categories of wire code. RESULTS: The reproducibility of any of three different classifications of wire codes was excellent (kappa > or = 0.89). Mean and median magnetic fields, and the percentage of homes with high magnetic fields increased with increasing category for each of the wire code classification schemes. The size of the odds ratios for risk of leukaemia and high categories of wire code did not reflect the mean levels of the magnetic field in those categories in two study regions. CONCLUSION: Misclassification of categories of wire code is not a major source of bias in the study. Wire codes provide a proxy measure of exposure to residential magnetic fields. If magnetic fields were a risk factor for leukaemia, however, there would be some attenuation of risk estimates based on wire codes because of misclassification of exposure to magnetic fields at both extremes of the wire code range. The lack of an association between high categories of wire code and risk of leukaemia cannot be explained by a failure of the wire code classification schemes to estimate exposure to magnetic fields in the study area.

 

Full Text

The Full Text of this article is available as a PDF (136.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes F., Wachtel H., Savitz D., Fuller J. Use of wiring configuration and wiring codes for estimating externally generated electric and magnetic fields. Bioelectromagnetics. 1989;10(1):13–21. doi: 10.1002/bem.2250100103. [DOI] [PubMed] [Google Scholar]
  2. Dovan T., Kaune W. T., Savitz D. A. Repeatability of measurements of residential magnetic fields and wire codes. Bioelectromagnetics. 1993;14(2):145–159. doi: 10.1002/bem.2250140207. [DOI] [PubMed] [Google Scholar]
  3. Feychting M., Ahlbom A. Magnetic fields and cancer in children residing near Swedish high-voltage power lines. Am J Epidemiol. 1993 Oct 1;138(7):467–481. doi: 10.1093/oxfordjournals.aje.a116881. [DOI] [PubMed] [Google Scholar]
  4. Feychting M., Kaune W. T., Savitz D. A., Ahlbom A. Estimating exposure in studies of residential magnetic fields and cancer: importance of short-term variability, time interval between diagnosis and measurement, and distance to power line. Epidemiology. 1996 May;7(3):220–224. doi: 10.1097/00001648-199605000-00001. [DOI] [PubMed] [Google Scholar]
  5. Fulton J. P., Cobb S., Preble L., Leone L., Forman E. Electrical wiring configurations and childhood leukemia in Rhode Island. Am J Epidemiol. 1980 Mar;111(3):292–296. doi: 10.1093/oxfordjournals.aje.a112899. [DOI] [PubMed] [Google Scholar]
  6. Gurney J. G., Davis S., Schwartz S. M., Mueller B. A., Kaune W. T., Stevens R. G. Childhood cancer occurrence in relation to power line configurations: a study of potential selection bias in case-control studies. Epidemiology. 1995 Jan;6(1):31–35. doi: 10.1097/00001648-199501000-00007. [DOI] [PubMed] [Google Scholar]
  7. Gurney J. G., Mueller B. A., Davis S., Schwartz S. M., Stevens R. G., Kopecky K. J. Childhood brain tumor occurrence in relation to residential power line configurations, electric heating sources, and electric appliance use. Am J Epidemiol. 1996 Jan 15;143(2):120–128. doi: 10.1093/oxfordjournals.aje.a008718. [DOI] [PubMed] [Google Scholar]
  8. Jones T. L., Shih C. H., Thurston D. H., Ware B. J., Cole P. Selection bias from differential residential mobility as an explanation for associations of wire codes with childhood cancer. J Clin Epidemiol. 1993 Jun;46(6):545–548. doi: 10.1016/0895-4356(93)90127-m. [DOI] [PubMed] [Google Scholar]
  9. Kaune W. T., Savitz D. A. Simplification of the Wertheimer-Leeper wire code. Bioelectromagnetics. 1994;15(4):275–282. doi: 10.1002/bem.2250150402. [DOI] [PubMed] [Google Scholar]
  10. Kaune W. T., Stevens R. G., Callahan N. J., Severson R. K., Thomas D. B. Residential magnetic and electric fields. Bioelectromagnetics. 1987;8(4):315–335. doi: 10.1002/bem.2250080402. [DOI] [PubMed] [Google Scholar]
  11. Kheifets L. I., Kavet R., Sussman S. S. Wire codes, magnetic fields, and childhood cancer. Bioelectromagnetics. 1997;18(2):99–110. doi: 10.1002/(sici)1521-186x(1997)18:2<99::aid-bem2>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  12. Kleinerman R. A., Linet M. S., Hatch E. E., Wacholder S., Tarone R. E., Severson R. K., Kaune W. T., Friedman D. R., Haines C. M., Muirhead C. R. Magnetic field exposure assessment in a case-control study of childhood leukemia. Epidemiology. 1997 Sep;8(5):575–583. doi: 10.1097/00001648-199709000-00017. [DOI] [PubMed] [Google Scholar]
  13. Linet M. S., Hatch E. E., Kleinerman R. A., Robison L. L., Kaune W. T., Friedman D. R., Severson R. K., Haines C. M., Hartsock C. T., Niwa S. Residential exposure to magnetic fields and acute lymphoblastic leukemia in children. N Engl J Med. 1997 Jul 3;337(1):1–7. doi: 10.1056/NEJM199707033370101. [DOI] [PubMed] [Google Scholar]
  14. London S. J., Thomas D. C., Bowman J. D., Sobel E., Cheng T. C., Peters J. M. Exposure to residential electric and magnetic fields and risk of childhood leukemia. Am J Epidemiol. 1991 Nov 1;134(9):923–937. doi: 10.1093/oxfordjournals.aje.a116176. [DOI] [PubMed] [Google Scholar]
  15. Neutra R. R., del Pizzo V. When "wire codes" predict cancer better than spot measurements of magnetic fields. Epidemiology. 1996 May;7(3):217–218. [PubMed] [Google Scholar]
  16. Preston-Martin S., Navidi W., Thomas D., Lee P. J., Bowman J., Pogoda J. Los Angeles study of residential magnetic fields and childhood brain tumors. Am J Epidemiol. 1996 Jan 15;143(2):105–119. doi: 10.1093/oxfordjournals.aje.a008717. [DOI] [PubMed] [Google Scholar]
  17. Savitz D. A., Kaune W. T. Childhood cancer in relation to a modified residential wire code. Environ Health Perspect. 1993 Apr 22;101(1):76–80. doi: 10.1289/ehp.9310176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Savitz D. A., Wachtel H., Barnes F. A., John E. M., Tvrdik J. G. Case-control study of childhood cancer and exposure to 60-Hz magnetic fields. Am J Epidemiol. 1988 Jul;128(1):21–38. doi: 10.1093/oxfordjournals.aje.a114943. [DOI] [PubMed] [Google Scholar]
  19. Thomas D. G., Gart J. J. Improved and extended exact and asymptotic methods for the combination of 2 x 2 tables. Comput Biomed Res. 1992 Feb;25(1):75–84. doi: 10.1016/0010-4809(92)90036-a. [DOI] [PubMed] [Google Scholar]
  20. Wertheimer N., Leeper E. Adult cancer related to electrical wires near the home. Int J Epidemiol. 1982 Dec;11(4):345–355. doi: 10.1093/ije/11.4.345. [DOI] [PubMed] [Google Scholar]
  21. Wertheimer N., Leeper E. Electrical wiring configurations and childhood cancer. Am J Epidemiol. 1979 Mar;109(3):273–284. doi: 10.1093/oxfordjournals.aje.a112681. [DOI] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES