Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Dec;65(12):5279–5288. doi: 10.1128/iai.65.12.5279-5288.1997

Comparison of inducible nitric oxide synthase expression in the brains of Listeria monocytogenes-infected cattle, sheep, and goats and in macrophages stimulated in vitro.

T W Jungi 1, H Pfister 1, H Sager 1, R Fatzer 1, M Vandevelde 1, A Zurbriggen 1
PMCID: PMC175760  PMID: 9393827

Abstract

The expression of inducible nitric oxide synthase (iNOS) was studied in the brains of cattle, sheep, and goat that succumbed to a natural infection with Listeria monocytogenes. The lesions in infected brains are characterized by microabscesses, perivascular cuffs, gliosis, glial nodules, and large areas of malacia. Using immunocytochemistry, we detected bacteria in microabscesses, particularly in sheep and goats, and in areas without signs of inflammation, but not in perivascular infiltrates. iNOS was expressed by macrophage (Mphi)-type cells of microabscesses and glial nodules but rarely by Mphi in areas of malacia, as determined by immunohistochemistry with iNOS-specific antibodies. iNOS was not detected in perivascular cuffs. Major histocompatibility complex class II molecules (MHC-II), another marker of cell activation, showed a different pattern of distribution. Perivascular cuffs contained high numbers of MHC-II-positive cells, including some with Mphi characteristics. Microabscesses in sheep and goats showed low expression of MHC-II, particularly in iNOS-expressing cells. In cattle, the expression of markers for activated or recruited phagocytes, the calcium-binding proteins S100A8 and S100A9 (formerly called MRP-8 and MRP-14, respectively), was largely restricted to cells showing weak or undetectable iNOS expression; iNOS-positive Mphi showed a low expression of S100A8 and S100A9. Thus, iNOS is expressed by a restricted subset of Mphi in listeric encephalitis. In cultured sheep and goat Mphi, a low proportion of cells expressed iNOS upon activation by L. monocytogenes and gamma interferon, resulting in nitrite generation at least 1 order of magnitude lower than that in similarly treated cattle Mphi. Since these species differences were much less obvious in vivo, it appears that the well-known species variation in iNOS expression by Mphi could reflect an in vitro phenomenon.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler H., Adler B., Peveri P., Werner E. R., Wachter H., Peterhans E., Jungi T. W. Differential regulation of inducible nitric oxide synthase production in bovine and caprine macrophages. J Infect Dis. 1996 Apr;173(4):971–978. doi: 10.1093/infdis/173.4.971. [DOI] [PubMed] [Google Scholar]
  2. Adler H., Frech B., Thöny M., Pfister H., Peterhans E., Jungi T. W. Inducible nitric oxide synthase in cattle. Differential cytokine regulation of nitric oxide synthase in bovine and murine macrophages. J Immunol. 1995 May 1;154(9):4710–4718. [PubMed] [Google Scholar]
  3. Adler H., Peterhans E., Jungi T. W. Generation and functional characterization of bovine bone marrow-derived macrophages. Vet Immunol Immunopathol. 1994 Jun;41(3-4):211–227. doi: 10.1016/0165-2427(94)90098-1. [DOI] [PubMed] [Google Scholar]
  4. Akiyama H., Ikeda K., Katoh M., McGeer E. G., McGeer P. L. Expression of MRP14, 27E10, interferon-alpha and leukocyte common antigen by reactive microglia in postmortem human brain tissue. J Neuroimmunol. 1994 Mar;50(2):195–201. doi: 10.1016/0165-5728(94)90046-9. [DOI] [PubMed] [Google Scholar]
  5. Albina J. E. On the expression of nitric oxide synthase by human macrophages. Why no NO? J Leukoc Biol. 1995 Dec;58(6):643–649. doi: 10.1002/jlb.58.6.643. [DOI] [PubMed] [Google Scholar]
  6. Becker S. Interferons as modulators of human monocyte-macrophage differentiation. I. Interferon-gamma increases HLA-DR expression and inhibits phagocytosis of zymosan. J Immunol. 1984 Mar;132(3):1249–1254. [PubMed] [Google Scholar]
  7. Bermudez L. E. Differential mechanisms of intracellular killing of Mycobacterium avium and Listeria monocytogenes by activated human and murine macrophages. The role of nitric oxide. Clin Exp Immunol. 1993 Feb;91(2):277–281. doi: 10.1111/j.1365-2249.1993.tb05895.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bernatowicz A., Ködel U., Frei K., Fontana A., Pfister H. W. Production of nitrite by primary rat astrocytes in response to pneumococci. J Neuroimmunol. 1995 Jul;60(1-2):53–61. doi: 10.1016/0165-5728(95)00053-5. [DOI] [PubMed] [Google Scholar]
  9. Brosnan C. F., Battistini L., Raine C. S., Dickson D. W., Casadevall A., Lee S. C. Reactive nitrogen intermediates in human neuropathology: an overview. Dev Neurosci. 1994;16(3-4):152–161. doi: 10.1159/000112102. [DOI] [PubMed] [Google Scholar]
  10. Bukrinsky M. I., Nottet H. S., Schmidtmayerova H., Dubrovsky L., Flanagan C. R., Mullins M. E., Lipton S. A., Gendelman H. E. Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J Exp Med. 1995 Feb 1;181(2):735–745. doi: 10.1084/jem.181.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Clark R. S., Kochanek P. M., Schwarz M. A., Schiding J. K., Turner D. S., Chen M., Carlos T. M., Watkins S. C. Inducible nitric oxide synthase expression in cerebrovascular smooth muscle and neutrophils after traumatic brain injury in immature rats. Pediatr Res. 1996 May;39(5):784–790. doi: 10.1203/00006450-199605000-00007. [DOI] [PubMed] [Google Scholar]
  12. Conlan J. W., North R. J. Neutrophils are essential for early anti-Listeria defense in the liver, but not in the spleen or peritoneal cavity, as revealed by a granulocyte-depleting monoclonal antibody. J Exp Med. 1994 Jan 1;179(1):259–268. doi: 10.1084/jem.179.1.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Endoh M., Maiese K., Wagner J. Expression of the inducible form of nitric oxide synthase by reactive astrocytes after transient global ischemia. Brain Res. 1994 Jul 18;651(1-2):92–100. doi: 10.1016/0006-8993(94)90683-1. [DOI] [PubMed] [Google Scholar]
  14. Faraci F. M., Brian J. E., Jr Nitric oxide and the cerebral circulation. Stroke. 1994 Mar;25(3):692–703. doi: 10.1161/01.str.25.3.692. [DOI] [PubMed] [Google Scholar]
  15. Fehr T., Schoedon G., Odermatt B., Holtschke T., Schneemann M., Bachmann M. F., Mak T. W., Horak I., Zinkernagel R. M. Crucial role of interferon consensus sequence binding protein, but neither of interferon regulatory factor 1 nor of nitric oxide synthesis for protection against murine listeriosis. J Exp Med. 1997 Mar 3;185(5):921–931. doi: 10.1084/jem.185.5.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Granger D. L., Hibbs J. B., Jr, Broadnax L. M. Urinary nitrate excretion in relation to murine macrophage activation. Influence of dietary L-arginine and oral NG-monomethyl-L-arginine. J Immunol. 1991 Feb 15;146(4):1294–1302. [PubMed] [Google Scholar]
  17. Green S. J., Nacy C. A., Meltzer M. S. Cytokine-induced synthesis of nitrogen oxides in macrophages: a protective host response to Leishmania and other intracellular pathogens. J Leukoc Biol. 1991 Jul;50(1):93–103. doi: 10.1002/jlb.50.1.93. [DOI] [PubMed] [Google Scholar]
  18. Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
  19. Hu S., Chao C. C., Khanna K. V., Gekker G., Peterson P. K., Molitor T. W. Cytokine and free radical production by porcine microglia. Clin Immunol Immunopathol. 1996 Jan;78(1):93–96. doi: 10.1006/clin.1996.0015. [DOI] [PubMed] [Google Scholar]
  20. Ii M., Sunamoto M., Ohnishi K., Ichimori Y. beta-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res. 1996 May 13;720(1-2):93–100. doi: 10.1016/0006-8993(96)00156-4. [DOI] [PubMed] [Google Scholar]
  21. Inoue S., Itagaki S., Amano F. Intracellular killing of Listeria monocytogenes in the J774.1 macrophage-like cell line and the lipopolysaccharide (LPS)-resistant mutant LPS1916 cell line defective in the generation of reactive oxygen intermediates after LPS treatment. Infect Immun. 1995 May;63(5):1876–1886. doi: 10.1128/iai.63.5.1876-1886.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jungi T. W., Brcic M., Sager H., Dobbelaere D. A., Furger A., Roditi I. Antagonistic effects of IL-4 and interferon-gamma (IFN-gamma) on inducible nitric oxide synthase expression in bovine macrophages exposed to gram-positive bacteria. Clin Exp Immunol. 1997 Sep;109(3):431–438. doi: 10.1046/j.1365-2249.1997.4891384.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jungi T. W., Thöny M., Brcic M., Adler B., Pauli U., Peterhans E. Induction of nitric oxide synthase in bovine mononuclear phagocytes is differentiation stage-dependent. Immunobiology. 1996 Aug;195(3):385–400. doi: 10.1016/S0171-2985(96)80054-4. [DOI] [PubMed] [Google Scholar]
  24. Keller R., Keist R., Joller P. Macrophage response to microbial pathogens: modulation of the expression of adhesion, CD14, and MHC class II molecules by viruses, bacteria, protozoa and fungi. Scand J Immunol. 1995 Sep;42(3):337–344. doi: 10.1111/j.1365-3083.1995.tb03665.x. [DOI] [PubMed] [Google Scholar]
  25. Krueger N., Low C., Donachie W. Phenotypic characterization of the cells of the inflammatory response in ovine encephalitic listeriosis. J Comp Pathol. 1995 Oct;113(3):263–275. doi: 10.1016/s0021-9975(05)80041-6. [DOI] [PubMed] [Google Scholar]
  26. MACKANESS G. B. Cellular resistance to infection. J Exp Med. 1962 Sep 1;116:381–406. doi: 10.1084/jem.116.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. MacMicking J. D., Nathan C., Hom G., Chartrain N., Fletcher D. S., Trumbauer M., Stevens K., Xie Q. W., Sokol K., Hutchinson N. Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell. 1995 May 19;81(4):641–650. doi: 10.1016/0092-8674(95)90085-3. [DOI] [PubMed] [Google Scholar]
  28. MacMicking J., Xie Q. W., Nathan C. Nitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–350. doi: 10.1146/annurev.immunol.15.1.323. [DOI] [PubMed] [Google Scholar]
  29. Mason G. L., Yang Z., Olchowy T. W., Jian Z., Bochsler P. N. Nitric oxide production and expression of inducible nitric oxide synthase by bovine alveolar macrophages. Vet Immunol Immunopathol. 1996 Sep;53(1-2):15–27. doi: 10.1016/0165-2427(96)05557-2. [DOI] [PubMed] [Google Scholar]
  30. Miles A. M., Owens M. W., Milligan S., Johnson G. G., Fields J. Z., Ing T. S., Kottapalli V., Keshavarzian A., Grisham M. B. Nitric oxide synthase in circulating vs. extravasated polymorphonuclear leukocytes. J Leukoc Biol. 1995 Nov;58(5):616–622. doi: 10.1002/jlb.58.5.616. [DOI] [PubMed] [Google Scholar]
  31. Minc-Golomb D., Tsarfaty I., Schwartz J. P. Expression of inducible nitric oxide synthase by neurones following exposure to endotoxin and cytokine. Br J Pharmacol. 1994 Jul;112(3):720–722. doi: 10.1111/j.1476-5381.1994.tb13136.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  33. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  34. Otter A., Blakemore W. F. Observation on the presence of Listeria monocytogenes in axons. Acta Microbiol Hung. 1989;36(2-3):125–131. [PubMed] [Google Scholar]
  35. Paakkari I., Lindsberg P. Nitric oxide in the central nervous system. Ann Med. 1995 Jun;27(3):369–377. doi: 10.3109/07853899509002590. [DOI] [PubMed] [Google Scholar]
  36. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  37. Peterson P. K., Hu S., Anderson W. R., Chao C. C. Nitric oxide production and neurotoxicity mediated by activated microglia from human versus mouse brain. J Infect Dis. 1994 Aug;170(2):457–460. doi: 10.1093/infdis/170.2.457. [DOI] [PubMed] [Google Scholar]
  38. Sager H., Davis W. C., Dobbelaere D. A., Jungi T. W. Macrophage-parasite relationship in theileriosis. Reversible phenotypic and functional dedifferentiation of macrophages infected with Theileria annulata. J Leukoc Biol. 1997 Apr;61(4):459–468. doi: 10.1002/jlb.61.4.459. [DOI] [PubMed] [Google Scholar]
  39. Schmidt H. H., Walter U. NO at work. Cell. 1994 Sep 23;78(6):919–925. doi: 10.1016/0092-8674(94)90267-4. [DOI] [PubMed] [Google Scholar]
  40. Schneemann M., Schoedon G., Hofer S., Blau N., Guerrero L., Schaffner A. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J Infect Dis. 1993 Jun;167(6):1358–1363. doi: 10.1093/infdis/167.6.1358. [DOI] [PubMed] [Google Scholar]
  41. Schäfer B. W., Wicki R., Engelkamp D., Mattei M. G., Heizmann C. W. Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. Genomics. 1995 Feb 10;25(3):638–643. doi: 10.1016/0888-7543(95)80005-7. [DOI] [PubMed] [Google Scholar]
  42. Sorg C. The calcium binding proteins MRP8 and MRP14 in acute and chronic inflammation. Behring Inst Mitt. 1992 Apr;(91):126–137. [PubMed] [Google Scholar]
  43. Steeg P. S., Moore R. N., Johnson H. M., Oppenheim J. J. Regulation of murine macrophage Ia antigen expression by a lymphokine with immune interferon activity. J Exp Med. 1982 Dec 1;156(6):1780–1793. doi: 10.1084/jem.156.6.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Taupenot L., Ciesielski-Treska J., Ulrich G., Chasserot-Golaz S., Aunis D., Bader M. F. Chromogranin A triggers a phenotypic transformation and the generation of nitric oxide in brain microglial cells. Neuroscience. 1996 May;72(2):377–389. doi: 10.1016/0306-4522(96)83172-1. [DOI] [PubMed] [Google Scholar]
  45. Turek J. J., Schoenlein I. A., Clark L. K., Van Alstine W. G. Dietary polyunsaturated fatty acid effects on immune cells of the porcine lung. J Leukoc Biol. 1994 Nov;56(5):599–604. [PubMed] [Google Scholar]
  46. Ulvestad E., Williams K., Bjerkvig R., Tiekotter K., Antel J., Matre R. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J Leukoc Biol. 1994 Dec;56(6):732–740. doi: 10.1002/jlb.56.6.732. [DOI] [PubMed] [Google Scholar]
  47. Vartanian T., Li Y., Zhao M., Stefansson K. Interferon-gamma-induced oligodendrocyte cell death: implications for the pathogenesis of multiple sclerosis. Mol Med. 1995 Nov;1(7):732–743. [PMC free article] [PubMed] [Google Scholar]
  48. Wei X. Q., Charles I. G., Smith A., Ure J., Feng G. J., Huang F. P., Xu D., Muller W., Moncada S., Liew F. Y. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature. 1995 Jun 1;375(6530):408–411. doi: 10.1038/375408a0. [DOI] [PubMed] [Google Scholar]
  49. Youdim M. B., Lavie L., Riederer P. Oxygen free radicals and neurodegeneration in Parkinson's disease: a role for nitric oxide. Ann N Y Acad Sci. 1994 Nov 17;738:64–68. doi: 10.1111/j.1749-6632.1994.tb21790.x. [DOI] [PubMed] [Google Scholar]
  50. Yui Y., Hattori R., Kosuga K., Eizawa H., Hiki K., Ohkawa S., Ohnishi K., Terao S., Kawai C. Calmodulin-independent nitric oxide synthase from rat polymorphonuclear neutrophils. J Biol Chem. 1991 Feb 25;266(6):3369–3371. [PubMed] [Google Scholar]
  51. Zhao B. Y., Collins M. T., Czuprynski C. J. Induction of L-arginine-dependent production of nitric oxide in bovine monocytes by interferon gamma and lipopolysaccharide. Res Vet Sci. 1996 Mar;60(2):190–192. doi: 10.1016/s0034-5288(96)90019-3. [DOI] [PubMed] [Google Scholar]
  52. Zielasek J., Hartung H. P. Molecular mechanisms of microglial activation. Adv Neuroimmunol. 1996;6(2):191–122. doi: 10.1016/0960-5428(96)00017-4. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES